### Refine

#### Year of publication

#### Document Type

- Article (71)
- Postprint (4)
- Preprint (4)
- Monograph/Edited Volume (1)
- Other (1)

#### Keywords

Strange nonchaotic attractors typically appear in quasiperiodically driven nonlinear systems. Two methods of their characterization are proposed. The first one is based on the bifurcation analysis of the systems, resulting from periodic approximations of the quasiperiodic forcing. Secondly, we propose th characterize their strangeness by calculating a phase sensitivity exponent, that measures the sensitivity with respect to changes of the phase of the external force. It is shown, that phase sensitivity appears if there is a non-zero probability for positive local Lyapunov exponents to occur.

We develop an effective description of noise-induced oscillations based on deterministic phase dynamics. The phase equation is constructed to exhibit correct frequency and distribution density of noise-induced oscillations. In the simplest one-dimensional case the effective phase equation is obtained analytically, whereas for more complex situations a simple method of data processing is suggested. As an application an effective coupling function is constructed that quantitatively describes periodically forced noise-induced oscillations.

An effective dynamical description of a general class of stochastic phase oscillators is presented. For this, the effective phase velocity is defined either by the stochastic phase oscillators invariant probability density or its first passage times. Using the first approach the effective phase exhibits the correct frequency and invariant distribution density, whereas the second approach models the proper phase resetting curve. The discrepancy of the effective models is most pronounced for noise-induced oscillations and is related to non-monotonicity of the stochastic phase variable due to fluctuations.

Phase compactons
(2006)

We study the phase dynamics of a chain of autonomous, self-sustained, dispersively coupled oscillators. In the quasicontinuum limit the basic discrete model reduces to a Korteveg-de Vries-like equation, but with a nonlinear dispersion. The system supports compactons - solitary waves with a compact support - and kovatons - compact formations of glued together kink-antikink pairs that propagate with a unique speed, but may assume an arbitrary width. We demonstrate that lattice solitary waves, though not exactly compact, have tails which decay at a superexponential rate. They are robust and collide nearly elastically and together with wave sources are the building blocks of the dynamics that emerges from typical initial conditions. In finite lattices, after a long time, the dynamics becomes chaotic. Numerical studies of the complex Ginzburg-Landau lattice show that the non-dispersive coupling causes a damping and deceleration, or growth and acceleration, of compactons. A simple perturbation method is applied to study these effects. (c) 2006 Elsevier B.V. All rights reserved

We consider the effect of external noise on the dynamics of limit cycle oscillators. The Lyapunov exponent becomes negative under influence of small white noise, what means synchronization of two or more identical systems subject to common noise. We analytically study the effect of small nonidentities in the oscillators and in the noise, and derive statistical characteristics of deviations from the perfect synchrony. Large white noise can lead to desynchronization of oscillators, provided they are nonisochronous. This is demonstrated for the Van der Pol-Duffing system

We study the stability of self-sustained oscillations under the influence of external noise. For small-noise amplitude a phase approximation for the Langevin dynamics is valid. A stationary distribution of the phase is used for an analytic calculation of the maximal Lyapunov exponent. We demonstrate that for small noise the exponent is negative, which corresponds to synchronization of oscillators. (c) 2004 Elsevier B.V. All rights reserved

Common noise acting on a population of identical oscillators can synchronize them. We develop a description of this process which is not limited to the states close to synchrony, but provides a global picture of the evolution of the ensembles. The theory is based on the Watanabe-Strogatz transformation, allowing us to obtain closed stochastic equations for the global variables. We show that at the initial stage, the order parameter grows linearly in time, while at the later stages the convergence to synchrony is exponentially fast. Furthermore, we extend the theory to nonidentical ensembles with the Lorentzian distribution of natural frequencies and determine the stationary values of the order parameter in dependence on driving noise and mismatch.

We consider general properties of groups of interacting oscillators, for which the natural frequencies are not in resonance. Such groups interact via nonoscillating collective variables like the amplitudes of the order parameters defined for each group. We treat the phase dynamics of the groups using the Ott-Antonsen ansatz and reduce it to a system of coupled equations for the order parameters. We describe different regimes of cosynchrony in the groups. For a large number of groups, heteroclinic cycles, corresponding to a sequential synchronous activity of groups and chaotic states where the order parameters oscillate irregularly, are possible.

We propose a novel method of reconstructing the topology and interaction functions for a general oscillator network. An ensemble of initial phases and the corresponding instantaneous frequencies is constructed by repeating random phase resets of the system dynamics. The desired details of network structure are then revealed by appropriately averaging over the ensemble. The method is applicable for a wide class of networks with arbitrary emergent dynamics, including full synchrony.

We study dynamics of populations of resonantly coupled oscillators having different frequencies. Starting from the coupled van der Pol equations we derive the Kuramoto-type phase model for the situation, where the natural frequencies of two interacting subpopulations are in relation 2 : 1. Depending on the parameter of coupling, ensembles can demonstrate fully synchronous clusters, partial synchrony (only one subpopulation synchronizes), or asynchrony in both subpopulations. Theoretical description of the dynamics based on the Watanabe-Strogatz approach is developed.

We generalize our recent approach to the reconstruction of phase dynamics of coupled oscillators from data [B. Kralemann et al., Phys. Rev. E 77, 066205 (2008)] to cover the case of small networks of coupled periodic units. Starting from a multivariate time series, we first reconstruct genuine phases and then obtain the coupling functions in terms of these phases. Partial norms of these coupling functions quantify directed coupling between oscillators. We illustrate the method by different network motifs for three coupled oscillators and for random networks of five and nine units. We also discuss nonlinear effects in coupling.

We demonstrate the emergence of a complex state in a homogeneous ensemble of globally coupled identical oscillators, reminiscent of chimera states in nonlocally coupled oscillator lattices. In this regime some part of the ensemble forms a regularly evolving cluster, while all other units irregularly oscillate and remain asynchronous. We argue that the chimera emerges because of effective bistability, which dynamically appears in the originally monostable system due to internal delayed feedback in individual units. Additionally, we present two examples of chimeras in bistable systems with frequency-dependent phase shift in the global coupling.

Internal signals like one's heartbeats are centrally processed via specific pathways and both their neural representations as well as their conscious perception (interoception) provide key information for many cognitive processes. Recent empirical findings propose that neural processes in the insular cortex, which are related to bodily signals, might constitute a neurophysiological mechanism for the encoding of duration. Nevertheless, the exact nature of such a proposed relationship remains unclear. We aimed to address this question by searching for the effects of cardiac rhythm on time perception by the use of a duration reproduction paradigm. Time intervals used were of 0.5, 2, 3, 7, 10, 14, 25, and 40s length. In a framework of synchronization hypothesis, measures of phase locking between the cardiac cycle and start/stop signals of the reproduction task were calculated to quantify this relationship. The main result is that marginally significant synchronization indices (Sls) between the heart cycle and the time reproduction responses for the time intervals of 2, 3, 10, 14, and 25s length were obtained, while results were not significant for durations of 0.5, 7, and 40s length. On the single participant level, several subjects exhibited some synchrony between the heart cycle and the time reproduction responses, most pronounced for the time interval of 25s (8 out of 23 participants for 20% quantile). Better time reproduction accuracy was not related with larger degree of phase locking, but with greater vagal control of the heart. A higher interoceptive sensitivity (IS) was associated with a higher synchronization index (SI) for the 2s time interval only. We conclude that information obtained from the cardiac cycle is relevant for the encoding and reproduction of time in the time span of 2-25s. Sympathovagal tone as well as interoceptive processes mediate the accuracy of time estimation.

Recovering interaction of endogenous rhythms from observations is challenging, especially if a mathematical model explaining the behaviour of the system is unknown. The decisive information for successful reconstruction of the dynamics is the sensitivity of an oscillator to external influences, which is quantified by its phase response curve. Here we present a technique that allows the extraction of the phase response curve from a non-invasive observation of a system consisting of two interacting oscillators-in this case heartbeat and respiration-in its natural environment and under free-running conditions. We use this method to obtain the phase-coupling functions describing cardiorespiratory interactions and the phase response curve of 17 healthy humans. We show for the first time the phase at which the cardiac beat is susceptible to respiratory drive and extract the respiratory-related component of heart rate variability. This non-invasive method for the determination of phase response curves of coupled oscillators may find application in many scientific disciplines.

Synchronization and emergence of a collective mode is a general phenomenon, frequently observed in ensembles of coupled self-sustained oscillators of various natures. In several circumstances, in particular in cases of neurological pathologies, this state of the active medium is undesirable. Destruction of this state by a specially designed stimulation is a challenge of high clinical relevance. Typically, the precise effect of an external action on the ensemble is unknown, since the microscopic description of the oscillators and their interactions are not available. We show that, desynchronization in case of a large degree of uncertainty about important features of the system is nevertheless possible; it can be achieved by virtue of a feedback loop with an additional adaptation of parameters. The adaptation also ensures desynchronization of ensembles with non-stationary, time-varying parameters. We perform the stability analysis of the feedback-controlled system and demonstrate efficient destruction of synchrony for several models, including those of spiking and bursting neurons.

We consider an array of Josephson junctions with a common LCR load. Application of the Watanabe-Strogatz approach [Physica D 74, 197 (1994)] allows us to formulate the dynamics of the array via the global variables only. For identical junctions this is a finite set of equations, analysis of which reveals the regions of bistability of the synchronous and asynchronous states. For disordered arrays with distributed parameters of the junctions, the problem is formulated as an integro-differential equation for the global variables; here stability of the asynchronous states and the properties of the transition synchrony-asynchrony are established numerically.

In nonlinear disordered Hamiltonian lattices, where there are no propagating phonons, the spreading of energy is of subdiffusive nature. Recently, the universality class of the subdiffusive spreading according to the nonlinear diffusion equation (NDE) has been suggested and checked for one-dimensional lattices. Here, we apply this approach to two-dimensional strongly nonlinear lattices and find a nice agreement of the scaling predicted from the NDE with the spreading results from extensive numerical studies. Moreover, we show that the scaling works also for regular lattices with strongly nonlinear coupling, for which the scaling exponent is estimated analytically. This shows that the process of chaotic diffusion in such lattices does not require disorder.

We introduce an optimal phase description of chaotic oscillations by generalizing the concept of isochrones. On chaotic attractors possessing a general phase description, we define the optimal isophases as Poincare surfaces showing return times as constant as possible. The dynamics of the resultant optimal phase is maximally decoupled from the amplitude dynamics and provides a proper description of the phase response of chaotic oscillations. The method is illustrated with the Rossler and Lorenz systems.

We present and study a family of finite amplitude breathers on a genuinely anharmonic Klein-Gordon lattice embedded in a nonlinear site potential. The direct numerical simulations are supported by a quasilinear Schrodinger equation (QLS) derived by averaging out the fast oscillations assuming small, albeit finite, amplitude vibrations. The genuinely anharmonic interlattice forces induce breathers which are strongly localized with tails evanescing at a doubly exponential rate and are either close to a continuum, with discrete effects being suppressed, or close to an anticontinuum state, with discrete effects being enhanced. Whereas the D-QLS breathers appear to be always stable, in general there is a stability threshold which improves with spareness of the lattice.

We consider a generalization of the Kuramoto model of coupled oscillators to the situation where communities of oscillators having essentially different natural frequencies interact. General equations describing possible resonances between the communities' frequencies are derived. The simplest situation of three resonantly interacting groups is analyzed in detail. We find conditions for the mutual coupling to promote or suppress synchrony in individual populations and present examples where the interaction between communities leads to their synchrony or to a partially asynchronous state or to a chaotic dynamics of order parameters. DOI: 10.1103/PhysRevLett.110.134101

We study an ensemble of identical noisy phase oscillators with a blinking mean-field coupling, where onecluster and two-cluster synchronous states alternate. In the thermodynamic limit the population is described by a nonlinear Fokker-Planck equation. We show that the dynamics of the order parameters demonstrates hyperbolic chaos. The chaoticity manifests itself in phases of the complex mean field, which obey a strongly chaotic Bernoulli map. Hyperbolicity is confirmed by numerical tests based on the calculations of relevant invariant Lyapunov vectors and Lyapunov exponents. We show how the chaotic dynamics of the phases is slightly smeared by finite-size fluctuations. DOI: 10.1103/PhysRevE.87.032912

We consider time evolution of Turing patterns in an extended system governed by an equation of the Swift-Hohenberg type, where due to an external periodic parameter modulation longwave and shortwave patterns with length scales related as 1:3 emerge in succession. We show theoretically and demonstrate numerically that the spatial phases of the patterns, being observed stroboscopically, are governed by an expanding circle map, so that the corresponding chaos of Turing patterns is hyperbolic, associated with a strange attractor of the Smale-Williams solenoid type. This chaos is shown to be robust with respect to variations of parameters and boundary conditions.

We study the properties of energy spreading in a lattice of elastically colliding harmonic oscillators (Ding-Dong model). We demonstrate that in the regular lattice the spreading from a localized initial state is mediated by compactons and chaotic breathers. In a disordered lattice, the compactons do not exist, and the spreading eventually stops, resulting in a finite configuration with a few chaotic spots.

We consider general heterogeneous ensembles of phase oscillators, sine coupled to arbitrary external fields. Starting with the infinitely large ensembles, we extend the Watanabe-Strogatz theory, valid for identical oscillators, to cover the case of an arbitrary parameter distribution. The obtained equations yield the description of the ensemble dynamics in terms of collective variables and constants of motion. As a particular case of the general setup we consider hierarchically organized ensembles, consisting of a finite number of subpopulations, whereas the number of elements in a subpopulation can be both finite or infinite. Next, we link the Watanabe-Strogatz and Ott-Antonsen theories and demonstrate that the latter one corresponds to a particular choice of constants of motion. The approach is applied to the standard Kuramoto-Sakaguchi model, to its extension for the case of nonlinear coupling, and to the description of two interacting subpopulations, exhibiting a chimera state. With these examples we illustrate that, although the asymptotic dynamics can be found within the framework of the Ott-Antonsen theory, the transients depend on the constants of motion. The most dramatic effect is the dependence of the basins of attraction of different synchronous regimes on the initial configuration of phases.

We show that a hyperbolic chaos can be observed in resonantly coupled oscillators near a Hopf bifurcation, described by normal-form-type equations for complex amplitudes. The simplest example consists of four oscillators, comprising two alternatively activated, due to an external periodic modulation, pairs. In terms of the stroboscopic Poincare map, the phase differences change according to an expanding Bernoulli map that depends on the coupling type. Several examples of hyperbolic chaos for different types of coupling are illustrated numerically.

We study scattering of a periodic wave in a string on two lumped oscillators attached to it. The equations can be represented as a driven (by the incident wave) dissipative (due to radiation losses) system of delay differential equations of neutral type. Nonlinearity of oscillators makes the scattering non-reciprocal: The same wave is transmitted differently in two directions. Periodic regimes of scattering are analyzed approximately, using amplitude equation approach. We show that this setup can act as a nonreciprocal modulator via Hopf bifurcations of the steady solutions. Numerical simulations of the full system reveal nontrivial regimes of quasiperiodic and chaotic scattering. Moreover, a regime of a "chaotic diode," where transmission is periodic in one direction and chaotic in the opposite one, is reported. (C) 2014 AIP Publishing LLC.

We explore ensemble inequivalence in long-range interacting systems by studying an XY model of classical spinswith ferromagnetic and nematic coupling. We demonstrate the inequivalence bymapping themicrocanonical phase diagram onto the canonical one, and also by doing the inverse mapping. We show that the equilibrium phase diagrams within the two ensembles strongly disagree within the regions of first-order transitions, exhibiting interesting features like temperature jumps. In particular, we discuss the coexistence and forbidden regions of different macroscopic states in both the phase diagrams.

We study synchronization in a Kuramoto model of globally coupled phase oscillators with a bi-harmonic coupling function, in the thermodynamic limit of large populations. We develop a method for an analytic solution of self-consistent equations describing uniformly rotating complex order parameters, both for single-branch (one possible state of locked oscillators) and multi-branch (two possible values of locked phases) entrainment. We show that synchronous states coexist with the neutrally linearly stable asynchronous regime. The latter has a finite life time for finite ensembles, this time grows with the ensemble size as a power law. (C) 2014 Elsevier B.V. All rights reserved.

Inferring the internal interaction patterns of a complex dynamical system is a challenging problem. Traditional methods often rely on examining the correlations among the dynamical units. However, in systems such as transcription networks, one unit's variable is also correlated with the rate of change of another unit's variable. Inspired by this, we introduce the concept of derivative-variable correlation, and use it to design a new method of reconstructing complex systems (networks) from dynamical time series. Using a tunable observable as a parameter, the reconstruction of any system with known interaction functions is formulated via a simple matrix equation. We suggest a procedure aimed at optimizing the reconstruction from the time series of length comparable to the characteristic dynamical time scale. Our method also provides a reliable precision estimate. We illustrate the method's implementation via elementary dynamical models, and demonstrate its robustness to both model error and observation error.

We study a generic model of globally coupled rotors that includes the effects of noise, phase shift in the coupling, and distributions of moments of inertia and natural frequencies of oscillation. As particular cases, the setup includes previously studied Sakaguchi-Kuramoto, Hamiltonian and Brownian mean-field, and Tanaka-Lichtenberg-Oishi and Acebron-Bonilla-Spigler models. We derive an exact solution of the self-consistent equations for the order parameter in the stationary state, valid for arbitrary parameters in the dynamics, and demonstrate nontrivial phase transitions to synchrony that include reentrant synchronous regimes. Copyright (C) EPLA, 2014

We study properties of chaos in generic one-dimensional nonlinear Hamiltonian lattices comprised of weakly coupled nonlinear oscillators by numerical simulations of continuous-time systems and symplectic maps. For small coupling, the measure of chaos is found to be proportional to the coupling strength and lattice length, with the typical maximal Lyapunov exponent being proportional to the square root of coupling. This strong chaos appears as a result of triplet resonances between nearby modes. In addition to strong chaos we observe a weakly chaotic component having much smaller Lyapunov exponent, the measure of which drops approximately as a square of the coupling strength down to smallest couplings we were able to reach. We argue that this weak chaos is linked to the regime of fast Arnold diffusion discussed by Chirikov and Vecheslavov. In disordered lattices of large size we find a subdiffusive spreading of initially localized wave packets over larger and larger number of modes. The relations between the exponent of this spreading and the exponent in the dependence of the fast Arnold diffusion on coupling strength are analyzed. We also trace parallels between the slow spreading of chaos and deterministic rheology.

We study the discrete nonlinear Schrodinger equation with a random potential in one dimension. It is characterized by the length, the strength of the random potential, and the field density that determines the effect of nonlinearity. Following the time evolution of the field and calculating the largest Lyapunov exponent, the probability of the system to be regular is established numerically and found to be a scaling function of the parameters. This property is used to calculate the asymptotic properties of the system in regimes beyond our computational power.

To characterize a destruction of Anderson localization by nonlinearity, we study the spreading behavior of initially localized states in disordered, strongly nonlinear lattices. Due to chaotic nonlinear interaction of localized linear or nonlinear modes, energy spreads nearly subdiffusively. Based on a phenomenological description by virtue of a nonlinear diffusion equation, we establish a one-parameter scaling relation between the velocity of spreading and the density, which is confirmed numerically. From this scaling it follows that for very low densities the spreading slows down compared to the pure power law.

We consider an autonomous system of partial differential equations for a one-dimensional distributed medium with periodic boundary conditions. Dynamics in time consists of alternating birth and death of patterns with spatial phases transformed from one stage of activity to another by the doubly expanding circle map. So, the attractor in the Poincar, section is uniformly hyperbolic, a kind of Smale - Williams solenoid. Finite-dimensional models are derived as ordinary differential equations for amplitudes of spatial Fourier modes (the 5D and 7D models). Correspondence of the reduced models to the original system is demonstrated numerically. Computational verification of the hyperbolicity criterion is performed for the reduced models: the distribution of angles of intersection for stable and unstable manifolds on the attractor is separated from zero, i.e., the touches are excluded. The example considered gives a partial justification for the old hopes that the chaotic behavior of autonomous distributed systems may be associated with uniformly hyperbolic attractors.

We study synchronization properties of coupled oscillators on networks that allow description in terms of global mean field coupling. These models generalize the standard Kuramoto-Sakaguchi model, allowing for different contributions of oscillators to the mean field and to different forces from the mean field on oscillators. We present the explicit solutions of self-consistency equations for the amplitude and frequency of the mean field in a parametric form, valid for noise-free and noise-driven oscillators. As an example, we consider spatially spreaded oscillators for which the coupling properties are determined by finite velocity of signal propagation. (C) 2014 AIP Publishing LLC.

We introduce an invariant phase description of stochastic oscillations by generalizing the concept of standard isophases. The average isophases are constructed as sections in the state space, having a constant mean first return time. The approach allows us to obtain a global phase variable of noisy oscillations, even in the cases where the phase is ill defined in the deterministic limit. A simple numerical method for finding the isophases is illustrated for noise-induced switching between two coexisting limit cycles, and for noise-induced oscillation in an excitable system. We also discuss how to determine isophases of observed irregular oscillations, providing a basis for a refined phase description in data analysis.

We discuss the effect of triplet synchrony in oscillatory networks. In this state the phases and the frequencies of three coupled oscillators fulfill the conditions of a triplet locking, whereas every pair of systems remains asynchronous. We suggest an easy to compute measure, a triplet synchronization index, which can be used to detect such states from experimental data.

We study the scaling properties of energy spreading in disordered strongly nonlinear Hamiltonian lattices. Such lattices consist of nonlinearly coupled local linear or nonlinear oscillators, and demonstrate a rather slow, subdiffusive spreading of initially localized wave packets. We use a fractional nonlinear diffusion equation as a heuristic model of this process, and confirm that the scaling predictions resulting from a self-similar solution of this equation are indeed applicable to all studied cases. We show that the spreading in nonlinearly coupled linear oscillators slows down compared to a pure power law, while for nonlinear local oscillators a power law is valid in the whole studied range of parameters.

We consider the nonlinear extension of the Kuramoto model of globally coupled phase oscillators where the phase shift in the coupling function depends on the order parameter. A bifurcation analysis of the transition from fully synchronous state to partial synchrony is performed. We demonstrate that for small ensembles it is typically mediated by stable cluster states, that disappear with creation of heteroclinic cycles, while for a larger number of oscillators a direct transition from full synchrony to a periodic or a quasiperiodic regime occurs.

We study pattern-forming instabilities in reaction-advection-diffusion systems. We develop an approach based on Lyapunov-Bloch exponents to figure out the impact of a spatially periodic mixing flow on the stability of a spatially homogeneous state. We deal with the flows periodic in space that may have arbitrary time dependence. We propose a discrete in time model, where reaction, advection, and diffusion act as successive operators, and show that a mixing advection can lead to a pattern-forming instability in a two-component system where only one of the species is advected. Physically, this can be explained as crossing a threshold of Turing instability due to effective increase of one of the diffusion constants.

Cycling chaos is a heteroclinic connection between several chaotic attractors, at which switchings between the chaotic sets occur at growing time intervals. Here we characterize the coherence properties of these switchings, considering nearly periodic regimes that appear close to the cycling chaos due to imperfections or to instability. Using numerical simulations of coupled Lorenz, Roessler, and logistic map models, we show that the coherence is high in the case of imperfection (so that asymptotically the cycling chaos is very regular), while it is low close to instability of the cycling chaos. (C) 2014 Elsevier B. V. All rights reserved.

When we fixate a stationary target, our eyes generate miniature (or fixational) eye movements involuntarily. These fixational eye movements are classified as slow components (physiological drift, tremor) and microsaccades, which represent rapid, small-amplitude movements. Here we propose an integrated mathematical model for the generation of slow fixational eye movements and microsaccades. The model is based on the concept of self-avoiding random walks in a potential, a process driven by a self-generated activation field. The self-avoiding walk generates persistent movements on a short timescale, whereas, on a longer timescale, the potential produces antipersistent motions that keep the eye close to an intended fixation position. We introduce microsaccades as fast movements triggered by critical activation values. As a consequence, both slow movements and microsaccades follow the same law of motion; i.e., movements are driven by the self-generated activation field. Thus, the model contributes a unified explanation of why it has been a long-standing problem to separate slow movements and microsaccades with respect to their motion-generating principles. We conclude that the concept of a self-avoiding random walk captures fundamental properties of fixational eye movements and provides a coherent theoretical framework for two physiologically distinct movement types.

Phase models are a powerful method to quantify the coupled dynamics of nonlinear oscillators from measured data. We use two phase modeling methods to quantify the dynamics of pairs of coupled electrochemical oscillators, based on the phases of the two oscillators independently and the phase difference, respectively. We discuss the benefits of the two-dimensional approach relative to the one-dimensional approach using phase difference. We quantify the dependence of the coupling functions on the coupling magnitude and coupling time delay. We show differences in synchronization predictions of the two models using a toy model. We show that the two-dimensional approach reveals behavior not detected by the one-dimensional model in a driven experimental oscillator. This approach is broadly applicable to quantify interactions between nonlinear oscillators, especially where intrinsic oscillator sensitivity and coupling evolve with time.

We study the properties of classical and quantum strongly nonlinear chains by means of extensive numerical simulations. Due to strong nonlinearity, the classical dynamics of such chains remains chaotic at arbitrarily low energies. We show that the collective excitations of classical chains are described by sound waves whose decay rate scales algebraically with the wave number with a generic exponent value. The properties of the quantum chains are studied by the quantum Monte Carlo method and it is found that the low-energy excitations are well described by effective phonon modes with the sound velocity dependent on an effective Planck constant. Our results show that at low energies the quantum effects lead to a suppression of chaos and drive the system to a quasi-integrable regime of effective phonon modes.

We present a novel approach for recovery of the directional connectivity of a small oscillator network by means of the phase dynamics reconstruction from multivariate time series data. The main idea is to use a triplet analysis instead of the traditional pairwise one. Our technique reveals an effective phase connectivity which is generally not equivalent to a structural one. We demonstrate that by comparing the coupling functions from all possible triplets of oscillators, we are able to achieve in the reconstruction a good separation between existing and non-existing connections, and thus reliably reproduce the network structure.

We generalize the Kuramoto model of globally coupled oscillators to multifrequency communities. A situation when mean frequencies of two subpopulations are close to the resonance 2 : 1 is considered in detail. We construct uniformly rotating solutions describing synchronization inside communities and between them. Remarkably, cross coupling across the frequencies can promote synchrony even when ensembles are separately asynchronous. We also show that the transition to synchrony due to the cross coupling is accompanied by a huge multiplicity of distinct synchronous solutions, which is directly related to a multibranch entrainment. On the other hand, for synchronous populations, the cross-frequency coupling can destroy phase locking and lead to chaos of mean fields.

We analyze quasiperiodic partially synchronous states in an ensemble of Stuart-Landau oscillators with global nonlinear coupling. We reveal two types of such dynamics: in the first case the time-averaged frequencies of oscillators and of the mean field differ, while in the second case they are equal, but the motion of oscillators is additionally modulated. We describe transitions from the synchronous state to both types of quasiperiodic dynamics, and a transition between two different quasiperiodic states. We present an example of a bifurcation diagram, where we show the borderlines for all these transitions, as well as domain of bistability.

We study how coherence of noisy oscillations can be optimally enhanced by external locking. Based on the condition of minimizing the phase diffusion constant, we find the optimal forcing explicitly in the limits of small and large noise, in dependence of the phase sensitivity of the oscillator. We show analytically that the form of the optimal force bifurcates with the noise intensity; this is confirmed by the analysis of an optimal locking forcing for an experimentally obtained phase sensitivity of a neural cell. In the limit of small noise, the results are compared with purely deterministic conditions of optimal locking.

In this paper, we discuss recent progress in research of ensembles of mean field coupled oscillators. Without an ambition to present a comprehensive review, we outline most interesting from our viewpoint results and surprises, as well as interrelations between different approaches. (c) 2015 AIP Publishing LLC.

Finite-size-induced transitions to synchrony in oscillator ensembles with nonlinear global coupling
(2015)

We report on finite-sized-induced transitions to synchrony in a population of phase oscillators coupled via a nonlinear mean field, which microscopically is equivalent to a hypernetwork organization of interactions. Using a self-consistent approach and direct numerical simulations, we argue that a transition to synchrony occurs only for finite-size ensembles and disappears in the thermodynamic limit. For all considered setups, which include purely deterministic oscillators with or without heterogeneity in natural oscillatory frequencies, and an ensemble of noise-driven identical oscillators, we establish scaling relations describing the order parameter as a function of the coupling constant and the system size.

We study numerically secondary modes on top of a chaotic state in disordered nonlinear lattices. Two basic models are considered, with or without a local on-site potential. By performing periodic spatial modulation of displacement and kinetic energy, and following the temporal evolution of the corresponding spatial profiles, we reveal different modes which can be interpreted as first and second sound.

We describe synchronization transitions in an ensemble of globally coupled phase oscillators with a bi-harmonic coupling function, and two sources of disorder-diversity of the intrinsic oscillators' frequencies, and external independent noise forces. Based on the self-consistent formulation, we derive analytic solutions for different synchronous states. We report on various non-trivial transitions from incoherence to synchrony, with the following possible scenarios: simple supercritical transition (similar to classical Kuramoto model); subcritical transition with large area of bistability of incoherent and synchronous solutions; appearance of a symmetric two-cluster solution which can coexist with the regular synchronous state. We show that the interplay between relatively small white noise and finite-size fluctuations can lead to metastability of the asynchronous solution.

We analyze star-type networks of phase oscillators by virtue of two methods. For identical oscillators we adopt the Watanabe-Strogatz approach, which gives full analytical description of states, rotating with constant frequency. For nonidentical oscillators, such states can be obtained by virtue of the self-consistent approach in a parametric form. In this case stability analysis cannot be performed, however with the help of direct numerical simulations we show which solutions are stable and which not. We consider this system as a model for a drum orchestra, where we assume that the drummers follow the signal of the leader without listening to each other and the coupling parameters are determined by a geometrical organization of the orchestra. (C) 2015 AIP Publishing LLC.

Partial synchronization in networks of non-linearly coupled oscillators: The Deserter Hubs Model
(2015)

We study the Deserter Hubs Model: a Kuramoto-like model of coupled identical phase oscillators on a network, where attractive and repulsive couplings are balanced dynamically due to nonlinearity of interactions. Under weak force, an oscillator tends to follow the phase of its neighbors, but if an oscillator is compelled to follow its peers by a sufficient large number of cohesive neighbors, then it actually starts to act in the opposite manner, i.e., in anti-phase with the majority. Analytic results yield that if the repulsion parameter is small enough in comparison with the degree of the maximum hub, then the full synchronization state is locally stable. Numerical experiments are performed to explore the model beyond this threshold, where the overall cohesion is lost. We report in detail partially synchronous dynamical regimes, like stationary phase-locking, multistability, periodic and chaotic states. Via statistical analysis of different network organizations like tree, scale-free, and random ones, we found a measure allowing one to predict relative abundance of partially synchronous stationary states in comparison to time-dependent ones. (C) 2015 AIP Publishing LLC.

Lyapunov Exponents
(2016)

Lyapunov exponents lie at the heart of chaos theory, and are widely used in studies of complex dynamics. Utilising a pragmatic, physical approach, this self-contained book provides a comprehensive description of the concept. Beginning with the basic properties and numerical methods, it then guides readers through to the most recent advances in applications to complex systems. Practical algorithms are thoroughly reviewed and their performance is discussed, while a broad set of examples illustrate the wide range of potential applications. The description of various numerical and analytical techniques for the computation of Lyapunov exponents offers an extensive array of tools for the characterization of phenomena such as synchronization, weak and global chaos in low and high-dimensional set-ups, and localization. This text equips readers with all the investigative expertise needed to fully explore the dynamical properties of complex systems, making it ideal for both graduate students and experienced researchers.

We consider synchronization properties of arrays of spin-torque nano-oscillators coupled via an RC load. We show that while the fully synchronized state of identical oscillators may be locally stable in some parameter range, this synchrony is not globally attracting. Instead, regimes of different levels of compositional complexity are observed. These include chimera states (a part of the array forms a cluster while other units are desynchronized), clustered chimeras (several clusters plus desynchronized oscillators), cluster state (all oscillators form several clusters), and partial synchronization (no clusters but a nonvanishing mean field). Dynamically, these states are also complex, demonstrating irregular and close to quasiperiodic modulation. Remarkably, when heterogeneity of spin-torque oscillators is taken into account, dynamical complexity even increases: close to the onset of a macroscopic mean field, the dynamics of this field is rather irregular.

We propose a technique to control coherent collective oscillations in ensembles of globally coupled units (self- sustained oscillators or maps). We demonstrate numerically and theoretically that a time delayed feedback in the mean field can, depending on the parameters, enhance or suppress the self-synchronization in the population. We discuss possible applications of the technique

We study the phase dynamics of a chain of autonomous oscillators with a dispersive coupling. In the quasicontinuum limit the basic discrete model reduces to a Korteveg-de Vries-like equation, but with a nonlinear dispersion. The system supports compactons: solitary waves with a compact support and kovatons which are compact formations of glued together kink-antikink pairs that may assume an arbitrary width. These robust objects seem to collide elastically and, together with wave trains, are the building blocks of the dynamics for typical initial conditions. Numerical studies of the complex Ginzburg-Landau and Van der Pol lattices show that the presence of a nondispersive coupling does not affect kovatons, but causes a damping and deceleration or growth and acceleration of compactons

We suggest a method for suppression of synchrony in a globally coupled oscillator network, based on the time- delayed feedback via the mean field. Having in mind possible applications for suppression of pathological rhythms in neural ensembles, we present numerical results for different models of coupled bursting neurons. A theory is developed based on the consideration of the synchronization transition as a Hopf bifurcation

We study the random-field Ising chain in the limit of strong exchange coupling. In order to calculate the free energy we apply a continuous Langevin-type approach. This continuous model can be solved exactly, whereupon we are able to locate the crossover between an exponential and a power-law decay of the free energy with increasing coupling strength. In terms of magnetization, this crossover restricts the validity of the linear scaling. The known analytical results for the free energy are recovered in the corresponding limits. The outcomes of numerical computations for the free energy are presented, which confirm the results of the continuous approach. We also discuss the validity of the replica method which we then utilize to investigate the sample-to-sample fluctuations of the finite size free energy

Interplay of coupling and common noise at the transition to synchrony in oscillator populations
(2016)

There are two ways to synchronize oscillators: by coupling and by common forcing, which can be pure noise. By virtue of the Ott-Antonsen ansatz for sine-coupled phase oscillators, we obtain analytically tractable equations for the case where both coupling and common noise are present. While noise always tends to synchronize the phase oscillators, the repulsive coupling can act against synchrony, and we focus on this nontrivial situation. For identical oscillators, the fully synchronous state remains stable for small repulsive coupling; moreover it is an absorbing state which always wins over the asynchronous regime. For oscillators with a distribution of natural frequencies, we report on a counter-intuitive effect of dispersion (instead of usual convergence) of the oscillators frequencies at synchrony; the latter effect disappears if noise vanishes.

Periodically forced ensemble of nonlinearly coupled oscillators : from partial to full synchrony
(2009)

We analyze the dynamics of a periodically forced oscillator ensemble with global nonlinear coupling. Without forcing, the system exhibits complicated collective dynamics, even for the simplest case of identical phase oscillators: due to nonlinearity, the synchronous state becomes unstable for certain values of the coupling parameter, and the system settles at the border between synchrony and asynchrony, what can be denoted as partial synchrony. We find that an external common forcing can result in two synchronous states: (i) a weak forcing entrains only the mean field, whereas the individual oscillators remain unlocked to the force and, correspondingly, to the mean field; (ii) a strong forcing fully synchronizes the system, making the phases of all oscillators identical. Analytical results are confirmed by numerics.

We study localized traveling waves and chaotic states in strongly nonlinear one-dimensional Hamiltonian lattices. We show that the solitary waves are superexponentially localized and present an accurate numerical method allowing one to find them for an arbitrary nonlinearity index. Compactons evolve from rather general initially localized perturbations and collide nearly elastically. Nevertheless, on a long time scale for finite lattices an extensive chaotic state is generally observed. Because of the system's scaling, these dynamical properties are valid for any energy.

We study numerically how the energy spreads over a finite disordered nonlinear one-dimensional lattice, where all linear modes are exponentially localized by disorder. We establish emergence of dynamical thermalization characterized as an ergodic chaotic dynamical state with a Gibbs distribution over the modes. Our results show that the fraction of thermalizing modes is finite and grows with the nonlinearity strength.

Self-organized partially synchronous dynamics in populations of nonlinearly coupled oscillators
(2009)

We analyze a minimal model of a population of identical oscillators with a nonlinear coupling-a generalization of the popular Kuramoto model. In addition to well-known for the Kuramoto model regimes of full synchrony, full asynchrony, and integrable neutral quasiperiodic states, ensembles of nonlinearly coupled oscillators demonstrate two novel nontrivial types of partially synchronized dynamics: self-organized bunch states and self-organized quasiperiodic dynamics. The analysis based on the Watanabe-Strogatz ansatz allows us to describe the self-organized bunch states in any finite ensemble as a set of equilibria, and the self-organized quasiperiodicity as a two-frequency quasiperiodic regime. An analytic solution in the thermodynamic limit of infinitely many oscillators is also discussed.

We propose a new mechanism which explains the existence of enormously sharp edges in the rings of Saturn. This mechanism is based on the synchronization phenomenon due to which the epicycle rotational phases of particles in the ring, under certain conditions, become synchronized with the phase of external satellite, e. g. with the phase of Mimas in the case of the outer B ring edge. This synchronization eliminates collisions between particles and suppresses the diffusion induced by collisions by orders of magnitude. The minimum of the diffusion is reached at the centre of the synchronization regime corresponding to the ratio 2:1 between the orbital frequency at the edge of B ring and the orbital frequency of Mimas. The synchronization theory gives the sharpness of the edge in a few tens of meters that is in agreement with available observations.

We report on a self-emerging chimera state in a homogeneous chain of nonlocally and nonlinearly coupled oscillators. This chimera, i.e., a state with coexisting regions of complete and partial synchrony, emerges via a supercritical bifurcation from a homogeneous state. We develop a theory of chimera based on the Ott-Antonsen equations for the local complex order parameter. Applying a numerical linear stability analysis, we also describe the instability of the chimera and transition to phase turbulence with persistent patches of synchrony.

We consider large populations of phase oscillators with global nonlinear coupling. For identical oscillators such populations are known to demonstrate a transition from completely synchronized state to the state of self-organized quasiperiodicity. In this state phases of all units differ, yet the population is not completely incoherent but produces a nonzero mean field; the frequency of the latter differs from the frequency of individual units. Here we analyze the dynamics of such populations in case of uniformly distributed natural frequencies. We demonstrate numerically and describe theoretically (i) states of complete synchrony, (ii) regimes with coexistence of a synchronous cluster and a drifting subpopulation, and (iii) self-organized quasiperiodic states with nonzero mean field and all oscillators drifting with respect to it. We analyze transitions between different states with the increase of the coupling strength; in particular we show that the mean field arises via a discontinuous transition. For a further illustration we compare the results for the nonlinear model with those for the Kuramoto-Sakaguchi model.

We study the Kuramoto model of globally coupled oscillators with a biharmonic coupling function. We develop an analytic self-consistency approach to find stationary synchronous states in the thermodynamic limit and demonstrate that there is a huge multiplicity of such states, which differ microscopically in the distributions of locked phases. These synchronous regimes already exist prior to the linear instability transition of the fully asynchronous state. In the presence of white Gaussian noise, the multiplicity is lifted, but the dependence of the order parameters on coupling constants remains nontrivial.

In this paper, we introduce and study systematically, in terms of phase response curves, the effect of dual-pulse excitation on the dynamics of an autonomous oscillator. Specifically, we test the deviations from linear summation of phase advances resulting from two small perturbations. We analytically derive a correction term, which generally appears for oscillators whose intrinsic dimensionality is >1. The nonlinear correction term is found to be proportional to the square of the perturbation. We demonstrate this effect in the Stuart-Landau model and in various higher dimensional neuronal models. This deviation from the superposition principle needs to be taken into account in studies of networks of pulse-coupled oscillators. Further, this deviation could be used in the verification of oscillator models via a dual-pulse excitation.

We study dynamics of a serial array of spin-torque oscillators with a parallel inductor-capacitor-resistor (LC R) load. In a large range of parameters the fully synchronous regime, where all the oscillators have the same state and the output field is maximal, is shown to be stable. However, not always such a robust complete synchronization develops from a random initial state; in many cases nontrivial clustering is observed, with a partial synchronization resulting in a quasiperiodic or chaotic mean-field dynamics.

In most cases tendency to synchrony in networks of oscillatory units increases with the coupling strength. Using the popular Hindmarsh-Rose neuronal model, we demonstrate that even for identical neurons and simple coupling the dynamics can be more complicated. Our numerical analysis for globally coupled systems and oscillator lattices reveals a new scenario of synchrony breaking with the increase of coupling, resulting in a quasiperiodic, modulated synchronous state.

The connection between the macroscopic description of collective chaos and the underlying microscopic dynamics is thoroughly analysed in mean-field models of one-dimensional oscillators. We investigate to what extent infinitesimal perturbations of the microscopic configurations can provide information also on the stability of the corresponding macroscopic phase. In ensembles of identical one-dimensional dynamical units, it is possible to represent the microscopic configurations so as to make transparent their connection with the macroscopic world. As a result, we find evidence of an intermediate, mesoscopic, range of distances, over which the instability is neither controlled by the microscopic equations nor by the macroscopic ones. We examine a whole series of indicators, ranging from the usual microscopic Lyapunov exponents, to the collective ones, including finite-amplitude exponents. A system of pulse-coupled oscillators is also briefly reviewed as an example of non-identical phase oscillators where collective chaos spontaneously emerges.

We demonstrate the occurrence of regimes with singular continuous (fractal) Fourier spectra in autonomous dissipative dynamical systems. The particular example in an ODE system at the accumulation points of bifurcation sequences associated to the creation of complicated homoclinic orbits. Two different machanisms responsible for the appearance of such spectra are proposed. In the first case when the geometry of the attractor is symbolically represented by the Thue-Morse sequence, both the continuous-time process and its descrete Poincaré map have singular power spectra. The other mechanism owes to the logarithmic divergence of the first return times near the saddle point; here the Poincaré map possesses the discrete spectrum, while the continuous-time process displays the singular one. A method is presented for computing the multifractal characteristics of the singular continuous spectra with the help of the usual Fourier analysis technique.

Two deterministic processes leading to roughening interfaces are considered. It is shown that the dynamics of linear perturbations of turbulent regimes in coupled map lattices is governed by a discrete version of the Kardar-Parisi-Zhang equation. The asymptotic scaling behavior of the perturbation field is investigated in the case of large lattices. Secondly, the dynamics of an order-disorder interface is modelled with a simple two-dimensional coupled map lattice, possesing a turbulent and a laminar state. It is demonstrated, that in some range of parameters the spreading of the turbulent state is accompanied by kinetic roughening of the interface.

In this article we review the application of the synchronization theory to the analysis of multivariate biological signals. We address the problem of phase estimation from data and detection and quantification of weak interaction, as well as quantification of the direction of coupling. We discuss the potentials as well as limitations and misinterpretations of the approach