### Refine

#### Year of publication

#### Document Type

- Article (57)
- Monograph/Edited Volume (2)
- Doctoral Thesis (1)
- Review (1)

Strange nonchaotic attractors : dynamics between order and chaos in Quasiperiodically Forced Systems
(2006)

We develop a weakly nonlinear theory of the Kuramoto transition in an ensemble of globally coupled oscillators in presence of additional time-delayed coupling terms. We show that a linear delayed feedback not only controls the transition point, but effectively changes the nonlinear terms near the transition. A purely nonlinear delayed coupling does not effect the transition point, but can reduce or enhance the amplitude of collective oscillations

We demonstrate, within the framework of the FitzHugh-Nagumo model, that a firing neuron can respond to a noisy driving in a nonreliable manner: the same Gaussian white noise acting on identical neurons evokes different patterns of spikes. The effect is characterized via calculations of the Lyapunov exponent and the event synchronization correlations. We construct a theory that explains the antireliability as a combined effect of a high sensitivity to noise of some stages of the dynamics and nonisochronicity of oscillations. Geometrically, the antireliability is described by a random noninvertible one-dimensional map

We consider a large population of globally coupled noisy phase oscillators. In the thermodynamic limit N this system exhibits a nonequilibrium phase transition, at which amacroscopic mean field appears. It is shown that for large but finite system size N the system can be described by the noisy Stuart-Landau equation, yielding scaling behavior of statistical characteristics of the macroscopic mean field with N. The predictions of the theory are checked numerically.

A simple one-dimensional microscopic model of the depinning transition of an interface from an attractive hard wall is introduced and investigated. Upon varying a control parameter, the critical behavior observed along the transition line changes from a directed-percolation type to a multiplicative-noise type. Numerical simulations allow for a quantitative study of the multicritical point separating the two regions. Mean-field arguments and the mapping on yet a simpler model provide some further insight on the overall scenario

We develop a statistical theory of the coupling sensitivity of chaos. The effect was first described by Daido [Prog. Theor. Phys. 72, 853 (1984)]; it appears as a logarithmic singularity in the Lyapunov exponent in coupled chaotic systems at very small couplings. Using a continuous-time stochastic model for the coupled systems we derive a scaling relation for the largest Lyapunov exponent. The singularity is shown to depend on the coupling and the systems' mismatch. Generalizations to the cases of asymmetrical coupling and three interacting oscillators are considered, too. The analytical results are confirmed by numerical simulations.

We demonstrate that a tune delay in weak coupling between two self-sustained oscillators can be estimated from the observed time series data. We present two methods which are. based on the analysis of interrelations between the phases of the signals. We show analytically and numerically that irregularity of the phase dynamics (due to the intrinsic noise or chaos) is essential for determination,of the delay. We compare and contrast both methods to the standard cross-correlation analysis