### Refine

#### Keywords

- relative index (6)
- elliptic operators (5)
- index theory (4)
- manifold with singularities (4)
- surgery (4)
- Fredholm property (3)
- conormal symbol (3)
- Atiyah-Bott obstruction (2)
- Lefschetz fixed point formula (2)
- boundary value problems (2)

For elliptic operators on manifolds with boundary, we define spectral boundary value problems, which generalize the Atiyah-Patodi-Singer problem to the case of nonhomogeneous boundary conditions, operators of arbitrary order, and nonself-adjoint conormal symbols. The Fredholm property is proved and equivalence with certain elliptic equations on manifolds with conical singularities is established.

We prove a general theorem on the local property of the relative index for a wide class of Fredholm operators, including relative index theorems for elliptic operators due to Gromov-Lawson, Anghel, Teleman, Booß-Bavnbek-Wojciechowski, et al. as special cases. In conjunction with additional conditions (like symmetry conditions) this theorem permits one to compute the analytical index of a given operator. In particular, we obtain new index formulas for elliptic pseudodifferential operators and quantized canonical transformations on manifolds with conical singularities as well as for elliptic boundary value problems with a symmetry condition for the conormal symbol.

Quantization methods in differential equations : Chapter 2: Quantization of Lagrangian modules
(1999)

In this chapter we use the wave packet transform described in Chapter 1 to quantize extended classical states represented by so-called Lagrangian sumbanifolds of the phase space. Functions on a Lagrangian manifold form a module over the ring of classical Hamiltonian functions on the phase space (with respect to pointwise multiplication). The quantization procedure intertwines this multiplication with the action of the corresponding quantum Hamiltonians; hence we speak of quantization of Lagrangian modules. The semiclassical states obtained by this quantization procedure provide asymptotic solutions to differential equations with a small parameter. Locally, such solutions can be represented by WKB elements. Global solutions are given by Maslov's canonical operator [2]; also see, e.g., [3] and the references therein. Here the canonical operator is obtained in the framework of the universal quantization procedure provided by the wave packet transform. This procedure was suggested in [4] (see also the references there) and further developed in [5]; our exposition is in the spirit of these papers. Some further bibliographical remarks can be found in the beginning of Chapter 1.

For elliptic problems on manifolds with edges, we construct index formulas in form of a sum of homotopy invariant contributions of the strata (the interior of the manifold and the edge). Both terms are the indices of elliptic operators, one of which acts in spaces of sections of finite-dimensional vector bundles on a compact closed manifold and the other in spaces of sections of infinite-dimensional vector bundles over the edge.

Contents: Chapter 1: Localization (Surgery) in Elliptic Theory 1.1. The Index Locality Principle 1.1.1. What is locality? 1.1.2. A pilot example 1.1.3. Collar spaces 1.1.4. Elliptic operators 1.1.5. Surgery and the relative index theorem 1.2. Surgery in Index Theory on Smooth Manifolds 1.2.1. The Booß–Wojciechowski theorem 1.2.2. The Gromov–Lawson theorem 1.3. Surgery for Boundary Value Problems 1.3.1. Notation 1.3.2. General boundary value problems 1.3.3. A model boundary value problem on a cylinder 1.3.4. The Agranovich–Dynin theorem 1.3.5. The Agranovich theorem 1.3.6. Bojarski’s theorem and its generalizations 1.4. (Micro)localization in Lefschetz theory 1.4.1. The Lefschetz number 1.4.2. Localization and the contributions of singular points 1.4.3. The semiclassical method and microlocalization 1.4.4. The classical Atiyah–Bott–Lefschetz theorem

When studyind elliptic operators on manifolds with nonisolated singularities one naturally encounters families of conormal symbols (i.e. operators elliptic with parameter p ∈ IR in the sense of Agranovich-Vishik) parametrized by the set of singular points. For homotopies of such families we define the notion of spectral flow, which in this case is an element of the K-group of the parameter space. We prove that the spectral flow is equal to the index of some family of operators on the infinite cone.