### Refine

#### Year of publication

- 2004 (3) (remove)

Contents: Chapter 7: The Index Problemon Manifolds with Singularities Preface 7.1. The Simplest Index Formulas 7.1.1. General properties of the index 7.1.2. The index of invariant operators on the cylinder 7.1.3. Relative index formulas 7.1.4. The index of general operators on the cylinder 7.1.5. The index of operators of the form 1 + G with a Green operator G 7.1.6. The index of operators of the form 1 + G on manifolds with edges 7.1.7. The index on bundles with smooth base and fiber having conical points 7.2. The Index Problem for Manifolds with Isolated Singularities 7.2.1. Statement of the index splitting problem 7.2.2. The obstruction to the index splitting 7.2.3. Computation of the obstruction in topological terms 7.2.4. Examples. Operators with symmetries 7.3. The Index Problem for Manifolds with Edges 7.3.1. The index excision property 7.3.2. The obstruction to the index splitting 7.4. Bibliographical Remarks

Contents: Chapter 6: Elliptic Theory on Manifolds with Edges Introduction 6.1. Motivation and Main Constructions 6.1.1. Manifolds with edges 6.1.2. Edge-degenerate differential operators 6.1.3. Symbols 6.1.4. Elliptic problems 6.2. Pseudodifferential Operators 6.2.1. Edge symbols 6.2.2. Pseudodifferential operators 6.2.3. Quantization 6.3. Elliptic Morphisms and the Finiteness Theorem 6.3.1. Matrix Green operators 6.3.2. General morphisms 6.3.3. Ellipticity, Fredholm property, and smoothness Appendix A. Fiber Bundles and Direct Integrals A.1. Local theory A.2. Globalization A.3. Versions of the Definition of the Norm