### Refine

#### Keywords

- elliptic operators (5) (remove)

This is a survey of recent results concerning the general index locality principle, associated surgery, and their applications to elliptic operators on smooth manifolds and manifolds with singularities as well as boundary value problems. The full version of the paper is submitted for publication in Russian Mathematical Surveys.

We prove a general theorem on the local property of the relative index for a wide class of Fredholm operators, including relative index theorems for elliptic operators due to Gromov-Lawson, Anghel, Teleman, Booß-Bavnbek-Wojciechowski, et al. as special cases. In conjunction with additional conditions (like symmetry conditions) this theorem permits one to compute the analytical index of a given operator. In particular, we obtain new index formulas for elliptic pseudodifferential operators and quantized canonical transformations on manifolds with conical singularities as well as for elliptic boundary value problems with a symmetry condition for the conormal symbol.

We prove a theorem describing the behaviour of the relative index of families of Fredholm operators under surgery performed on spaces where the operators act. In connection with additional conditions (like symmetry conditions) this theorem results in index formulas for given operator families. By way of an example, we give an application to index theory of families of boundary value problems.

We prove a general theorem on the behavior of the relative index under surgery for a wide class of Fredholm operators, including relative index theorems for elliptic operators due to Gromov-Lawson, Anghel, Teleman, Booß-Bavnbek-Wojciechowski, et al. as special cases. In conjunction with additional conditions (like symmetry conditions), this theorem permits one to compute the analytical index of a given operator. In particular, we obtain new index formulas for elliptic pseudodifferential operators and quantized canonical transformations on manifolds with conical singularities.