### Refine

#### Keywords

- relative index (6)
- elliptic operators (5)
- index theory (4)
- manifold with singularities (4)
- surgery (4)
- Fredholm property (3)
- conormal symbol (3)
- Atiyah-Bott obstruction (2)
- Lefschetz fixed point formula (2)
- boundary value problems (2)

For elliptic operators on manifolds with boundary, we define spectral boundary value problems, which generalize the Atiyah-Patodi-Singer problem to the case of nonhomogeneous boundary conditions, operators of arbitrary order, and nonself-adjoint conormal symbols. The Fredholm property is proved and equivalence with certain elliptic equations on manifolds with conical singularities is established.

The quantization of contact transformations of the cosphere bundle over a manifold with conical singularities is described. The index of Fredholm operators given by this quantization is calculated. The answer is given in terms of the Epstein-Melrose contact degree and the conormal symbol of the corresponding operator.

Relative elliptic theory
(2002)

This paper is a survey of relative elliptic theory (i.e. elliptic theory in the category of smooth embeddings), closely related to the Sobolev problem, first studied by Sternin in the 1960s. We consider both analytic aspects to the theory (the structure of the algebra of morphismus, ellipticity, Fredholm property) and topological aspects (index formulas and Riemann-Roch theorems). We also study the algebra of Green operators arising as a subalgebra of the algebra of morphisms.

We prove a general theorem on the behavior of the relative index under surgery for a wide class of Fredholm operators, including relative index theorems for elliptic operators due to Gromov-Lawson, Anghel, Teleman, Booß-Bavnbek-Wojciechowski, et al. as special cases. In conjunction with additional conditions (like symmetry conditions), this theorem permits one to compute the analytical index of a given operator. In particular, we obtain new index formulas for elliptic pseudodifferential operators and quantized canonical transformations on manifolds with conical singularities.

Content: 0.1 Preliminary Remarks Chapter 1: Noncommutative Analysis: Main Ideas, Definitions, and Theorems 1.1 Functions of One Operator (Functional Calculi) 1.2 Functions of Several Operators 1.3 Main Formulas of Operator Calculus 1.4 Main Tools of Noncommutative Analysis 1.5 Composition Laws and Ordered Representations