### Refine

#### Year of publication

#### Document Type

- Article (43)
- Preprint (8)
- Monograph/Edited Volume (5)
- Doctoral Thesis (2)
- Review (2)

The nonlinear interaction of waves excited by the modified two-stream instability (Farley-Buneman instability) is considered. It is found that, during the linear stage of wave growth, the enhanced pressure of the high-frequency part of the waves locally generates a ponderomotive force. This force acts on the plasma particles and redistributes them. Thus an additional electrostatic polarization field occurs, which influences the low-frequency part of the waves. Then, the low-frequency waves also cause a redistribution of the high-frequency waves. In the paper, a self-consistent system of equations is obtained, which describes the nonlinear interaction of the waves. It is shown that the considered mechanism of wave interaction causes a nonlinear stabilization of the high-frequency waves’ growth and a formation of local density structures of the charged particles. The density modifications of the charged particles during the non-linear stage of wave growth and the possible interval of aspect angles of the high-frequency waves are estimated.

The dynamics of tail-like current sheets under the influence of small-scale plasma turbulence
(1999)

A 2D-magnetohydrodynamic model of current-sheet dynamics caused by anomalous electrical resistivity as result of small-scale plasma turbulence is proposed. The anomalous resistivity is assumed to be proportional to the square of the gradient of the magnetic pressure as may be valid for instance in the case of lower-hybrid-drift turbulence. The initial resistivity pulse is given. Then the temporal and spatial evolution of the magnetic and electric fields, plasma density, pressure, convection and resistivity are considered. The motion of the induced electric field is discussed as indicator of the plasma disturbances. The obtained results found using much improved numerical methods show a magnetic field evolution with x-line formation and plasma acceleration. Besides, in the current sheet, three types of magnetohydrodynamic waves occur, fast magnetoacoustic waves of compression and rarefaction as well as slow magnetoacoustic waves.

A numerical MHD model is developed to investigate acceleration and heating of both thermal and auroral plasma. This is done for magnetospheric flux tubes in which intensive field aligned currents flow. To give each of these tubes, the empirical Tsyganenko model of the magnetospheric field is used. The parameters of the background plasma outside the flux tube as well as the strength of the electric field of magnetospheric convection are given. Performing the numerical calculations, the distributions of the plasma densities, velocities, temperatures, parallel electric field and current, and of the coefficients of thermal conductivity are obtained in a self-consistent way. It is found that EIC turbulence develops effectively in the thermal plasma. The parallel electric field develops under the action of the anomalous resistivity. This electric field accelerates both the thermal and the auroral plasma. The thermal turbulent plasma is also subjected to an intensive heating. The increase of the plasma of the Earth's ionosphere. Besides, studying the growth and dispersion properties of oblique ion cyclotron waves excited in a drifting magnetized plasma, it is shown that under non-stationary conditions such waves may reveal the properties of bursts of polarized transverse electromagnetic waves at frequencies near the patron gyrofrequency.

Basing on recent solar models, the excitation of ion-acoustic turbulence in the weaklycollisional, fully and partially-ionized regions of the solar atmosphere is investigated. Within the frame of hydrodynamics, conditions are found under which the heating of the plasma by ion-acoustic type waves is more effective than the Joule heating. Taking into account wave and Joule heating effects, a nonlinear differential equation is derived, which describes the evolution of nonlinear ion-acoustic waves in the collisional plasma.

In this paper an analysis of the excitation conditions of mirror waves is done, which propagate parallel to an external magnetic field. There are found analytical expressions for the dispersion relations of the waves in case of different plasma conditions. These relations may be used in future to develop the nonlinear theory of mirror waves. In comparison with former analytical works, in the study the inuence of the magnetic field and nite temperatures of the ions parallel to the magnetic field are taken into account. Application is done for the earth's magnetosheath.

A model of the generation of pulses of local electric fields with characteristic time scales of 1–10 minutes is considered for atmospheric conditions above fracture regions of earthquakes. In the model, it is proposed that aerosols, increased ionization velocity and upstreaming air flows occur at night-time conditions. The pulses of local electric fields cause respective pulses of infrared emissions. But infrared emissions with time scales of 1–10 minutes were not observed up to now experimentally. The authors think, that the considered non-stationary field and radiation effects might be a new-type of applicable earthquake indicators and ask to perform special earth-based and satellite observations of the night-time atmosphere in seismoactive fracture regions.

In the present work, phenomena in the ionosphere are studied, which are connected with earthquakes (16 events) having a depth of less than 50 km and a magnitude M larger than 4. Analysed are night-time Es-spread effects using data of the vertical sounding station Petropavlovsk- Kanchatsky (φ=53.0°, λ=158.7°) from May 2004 until August 2004 registered every 15 minutes. It is found that the maximum distance of the earthquake from the sounding station, where pre-seismic phenomena are yet observable, depends on the magnitude of the earthquake. Further it is shown that 1-2 days before the earthquakes, in the premidnight hours, the appearance of Es-spread increases. The reliability of this increase amounts to 0.95.

The statistical analysis of the variations of the dayly-mean frequency of the maximum ionospheric electron density foF2 is performed in connection with the occurrence of (more than 60) earthquakes with magnitudes M > 6.0, depths h < 80 km and distances from the vertical sounding station R < 1000 km. For the study, data of the Tokyo sounding station are used, which were registered every hour in the years 1957-1990. It is shown that, on the average, foF2 decreases before the earthquakes. One day before the shock the decrease amounts to about 5 %. The statistical reliability of this phenomenon is obtained to be better than 0.95. Further, the variations of the occurrence probability of the turbulization of the F-layer (F spread) are investigated for (more than 260) earthquakes with M > 5.5, h < 80 km, R < 1000 km. For the analysis, data of the Japanese station Akita from 1969-1990 are used, which were obtained every hour. It is found that before the earthquakes the occurrence probability of F spread decreases. In the week before the event, the decrease has values of more than 10 %. The statistical reliability of this phenomenon is also larger than 0.95. Examining the seismo-ionospheric effects, here periods of time with weak heliogeomagnetic disturbances are considered, the Wolf number is less than 100 and the index ∑ Kp is smaller than 30.