### Refine

#### Document Type

- Article (9)
- Monograph/Edited Volume (1)

The effect of additive noise on transitions in nonlinear systems far from equilibrium is studied. It is shown that additive noise in itself can induce a hidden phase transition, which is similar to the transition induced by multiplicative noise in a nonlinear oscillator [P. Landa and A. Zaikin, Phys. Rev. E 54, 3535 (1996)]. Investigation of different nonlinear models that demonstrate phase transitions induced by multiplicative noise shows that the influence of additive noise upon such phase transitions can be crucial: additive noise can either blur such a transition or stabilize noise-induced oscillations.

Control of noise-induced oscillations of a pendulum with a rondomly vibrating suspension axis
(1997)

The results of the theoretical consideration of stochastic resonance in overdamped bistable oscillators are given. These results are founded not on the model of two states as in [McNamara B, Wiesenfeld K. Theory of stochastic resonance. Phys Rev A 1989;39:4854-69], but on splitting of motion into regular and random and the rigorous solution of the Fokker-Planck equation for the random component. We show that this resonance is caused by a change, under the influence of noise, of the system's effective stiffness and damping factor contained in the equation for the regular component. For a certain value of the noise intensity the effective stiffness is minimal, and this fact causes non-monotonic change of the output signal amplitude as the noise intensity changes. It is important that the location of the minimum and its value depend essentially on the signal frequency.