### Refine

#### Year of publication

#### Document Type

- Article (36)
- Preprint (9)
- Monograph/Edited Volume (3)

#### Institute

- Interdisziplinäres Zentrum für Dynamik komplexer Systeme (48) (remove)

The Voyager 2 Photopolarimeter experiment has yielded the highest resolved data of Saturn's rings, exhibiting a wide variety of features. The B-ring region between 105000 km and 110000 km distance from Saturn has been investigated. It has a high matter density and contains no significance features visible by eye. Analysis with statistical methods has let us to the detection of two significant events. These features are correlated with the inner 3:2 resonances of the F-ring shepherd satellites Pandora and Prometheus, and may be evidence of large ring paricles caught in the corotation resonances.

We investigate the cognitive control in polyrhythmic hand movements as a model paradigm for bimanual coordination. Using a symbolic coding of the recorded time series, we demonstrate the existence of qualitative transitions induced by experimental manipulation of the tempo. A nonlinear model with delayed feedback control is proposed, which accounts for these dynamical transitions in terms of bifurcations resulting from variation of the external control parameter. Furthermore, it is shown that transitions can also be observed due to fluctuations in the timing control level. We conclude that the complexity of coordinated bimanual movements results from interactions between nonlinear control mechanisms with delayed feedback and stochastic timing components.

The dynamics of noisy bistable systems is analyzed by means of Lyapunov exponents and measures of complexity. We consider both the classical Kramers problem with additive white noise and the case when the barrier fluctuates due to additional external colored noise. In case of additive noise we calculate the Lyapunov exponents and all measures of complexity analytically as functions of the noise intensity resp. the mean escape time. For the problem of fluctuating barrier the usual description of the dynamics with the mean escape time is not sufficient. The application of the concept of measures of complexity allows to describe the structures of motion in more detail. Most complexity measures sign the value of correlation time at which the phenomenon of resonant activation occurs with an extremum.

Contents: 1 Introduction 2 Experiment 3 Data 4 Symbolic dynamics 4.1 Symbolic dynamics as a tool for data analysis 4.2 2-symbols coding 4.3 3-symbols coding 5 Measures of complexity 5.1 Word statistics 5.2 Shannon entropy 6 Testing for stationarity 6.1 Stationarity 6.2 Time series of cycle durations 6.3 Chi-square test 7 Control parameters in the production of rhythms 8 Analysis of relative phases 9 Discussion 10 Outlook

We demonstrate the occurrence of regimes with singular continuous (fractal) Fourier spectra in autonomous dissipative dynamical systems. The particular example in an ODE system at the accumulation points of bifurcation sequences associated to the creation of complicated homoclinic orbits. Two different machanisms responsible for the appearance of such spectra are proposed. In the first case when the geometry of the attractor is symbolically represented by the Thue-Morse sequence, both the continuous-time process and its descrete Poincaré map have singular power spectra. The other mechanism owes to the logarithmic divergence of the first return times near the saddle point; here the Poincaré map possesses the discrete spectrum, while the continuous-time process displays the singular one. A method is presented for computing the multifractal characteristics of the singular continuous spectra with the help of the usual Fourier analysis technique.

In the modern industrialized countries every year several hundred thousands of people die due to the sudden cardiac death. The individual risk for this sudden cardiac death cannot be defined precisely by common available, non-invasive diagnostic tools like Holter-monitoring, highly amplified ECG and traditional linear analysis of heart rate variability (HRV). Therefore, we apply some rather unconventional methods of nonlinear dynamics to analyse the HRV. Especially, some complexity measures that are basing on symbolic dynamics as well as a new measure, the renormalized entropy, detect some abnormalities in the HRV of several patients who have been classified in the low risk group by traditional methods. A combination of these complexity measures with the parameters in the frequency domain seems to be a promising way to get a more precise definition of the individual risk. These findings have to be validated by a representative number of patients.

We investigate the relationship between precipitation and runoff data from a small forested catchment in the Harz mountains (Germany). For this purpose, we develop a conceptual model including memory effects to predict the runoff signal using the precipitation data as input. An enhanced variant of the model also includes air temperature as input variable. We show in terms of correlation functions that this model describes main dynamical properties of the runoff, especially the delay between rain event and runoff response as the annual persistence in the runoff data.

We have used techniques of nonlinear dynamics to compare a special model for the reversals of the Earth's magnetic field with the observational data. Although this model is rather simple, there is no essential difference to the data by means of well-known characteristics, such as correlation function and probability distribution. Applying methods of symbolic dynamics we have found that the considered model is not able to describe the dynamical properties of the observed process. These significant differences are expressed by algorithmic complexity and Renyi information.

Two deterministic processes leading to roughening interfaces are considered. It is shown that the dynamics of linear perturbations of turbulent regimes in coupled map lattices is governed by a discrete version of the Kardar-Parisi-Zhang equation. The asymptotic scaling behavior of the perturbation field is investigated in the case of large lattices. Secondly, the dynamics of an order-disorder interface is modelled with a simple two-dimensional coupled map lattice, possesing a turbulent and a laminar state. It is demonstrated, that in some range of parameters the spreading of the turbulent state is accompanied by kinetic roughening of the interface.

We have discussed some tools from nonlinear dynamics which may help to analyze transient phenomena, such as solar bursts. The structure function known from turbulence theory is an appropriate method to find out some scaling behavior of fluctuations in time. More generally, the wavelet analysis, which is some generalization of the power spectrum, exhibits information on the location as well as the size of hidden characteristic features. Applying both techniques to microwave bursts, we have found some scaling properties that refer to the existence of hierarchic time structures. This is in good accordance with the electric circuit model for describing the flare-particle energization process.

Objectives: Scoring sleep visually based on polysomnography is an important but time-consuming element of sleep medicine. Where-as computer software assists human experts in the assignment of sleep stages to polysomnogram epochs, their performance is usually insufficient. This study evaluates the possibility to fully automatize sleep staging considering the reliability of the sleep stages available from human expert sleep scorers. Methods: We obtain features from EEG, ECG and respiratory signals of polysomnograms from ten healthy subjects. Using the sleep stages provided by three human experts, we evaluate the performance of linear discriminant analysis on the entire polysomnogram and:only on epochs where the three experts agree in their-sleep stage scoring. Results: We show that in polysomnogram intervals, to which all three scorers assign the same sleep stage, our algorithm achieves 90% accuracy. This high rate of agreement with the human experts is accomplished with only a small set of three frequency features from the EEG. We increase-the performance to 93% by including ECG and respiration features. In contrast, on intervals of ambiguous sleep stage, the sleep stage classification obtained from our algorithm, agrees with the human consensus scorer in approximately 61%. Conclusions: These findings suggest that machine classification is highly consistent with human sleep staging and that error in the algorithm's assignments is rather a problem of lack of well-defined criteria for human experts to judge certain polysomnogram epochs than an insufficiency of computational procedures

The incidence of cardiovascular diseases increases with the growth of the human population and an aging society, leading to very high expenses in the public health system. Therefore, it is challenging to develop sophisticated methods in order to improve medical diagnostics. The question whether the normal heart rate is chaotic or not is an attempt to elucidate the underlying mechanisms of cardiovascular dynamics and therefore a highly controversial topical challenge. In this contribution we demonstrate that linear and nonlinear parameters allow us to separate completely the data sets of the three groups provided for this controversial topic in nonlinear dynamics. The question whether these time series are chaotic or not cannot be answered satisfactorily without investigating the underlying mechanisms leading to them. We give an example of the dominant influence of respiration on heart beat dynamics, which shows that observed fluctuations can be mostly explained by respiratory modulations of heart rate and blood pressure (coefficient of determination: 96%). Therefore, we recommend reformulating the following initial question: "Is the normal heart rate chaotic?" We rather ask the following: " Is the normal heart rate 'chaotic' due to respiration?"

Aims. Sunspot distribution in the northern and southern solar hemispheres exibit striking synchronous behaviour on the scale of a Schwabe cycle. However, sometimes the bilateral symmetry of the Butterfly diagram relative to the solar equatorial plane breaks down. The investigation of this phenomenon is important to explaining the almost-periodic behaviour of solar cycles. Methods. We use cross-recurrence plots for the study of the time-varying phase asymmetry of the northern and southern hemisphere and compare our results with the latitudinal distribution of the sunspots. Results. We observe a long-term persistence of phase leading in one of the hemispheres, which lasts almost 4 solar cycles and probably corresponds to the Gleissberg cycle. Long-term variations in the hemispheric-leading do not demonstrate clear periodicity but are strongly anti-correlated with the long-term variations in the magnetic equator.

Sensory information entering the nervous system follows independent paths of processing such that specific features are individually detected. However, sensory perception, awareness, and cognition emerge from the combination of information. Here we have analyzed the corticocortical network of the cat, looking for the anatomical substrate which permits the simultaneous segregation and integration of information in the brain. We find that cortical communications are mainly governed by three topological factors of the underlying network: (i) a large density of connections, (ii) segregation of cortical areas into clusters, and (iii) the presence of highly connected hubs aiding the multisensory processing and integration. Statistical analysis of the shortest paths reveals that, while information is highly accessible to all cortical areas, the complexity of cortical information processing may arise from the rich and intricate alternative paths in which areas can influence each other.

The response of scale-free networks with community structure to external stimuli is studied. By disturbing some nodes with different strategies, it is shown that the robustness of this kind of network can be enhanced due to the existence of communities in the networks. Some of the response patterns are found to coincide with topological communities. We show that such phenomena also occur in the cat brain network which is an example of a scale-free like network with community structure. Our results provide insights into the relationship between network topology and the functional organization in complex networks from another viewpoint.

The EEG is one of the most commonly used tools in brain research. Though of high relevance in research, the data obtained is very noisy and nonstationary. In the present article we investigate the applicability of a nonlinear data analysis method, the recurrence quantification analysis (RQA), to Such data. The method solely rests on the natural property of recurrence which is a phenomenon inherent to complex systems, such as the brain. We show that this method is indeed suitable for the analysis of EEG data and that it might improve contemporary EEG analysis.

Experimental evidences point Out the participation of nonsynaptic mechanisms (e.g., fluctuations in extracellular tons) in epileptiform bursting and spreading depression (SD). During these abnormal oscillatory patterns, it is observed an increase of extracellular potassium concentration [K+](o) and a decrease of extracellular calcium concentration [Ca2+](o) which raises the neuronal excitability. However, whether the high [K+](o) triggers and propagates these abnormal neuronal activities or plays a secondary role into this process is unclear. To better understand the influence of extracellular potassium dynamics in these oscillatory patterns, the experimental conditions of high [K+](o) and zero [Ca2+](o) were replicated in an extended Golomb model where we added important regulatory mechanisms of ion concentration as Na+-K+ pump, ion diffusion and glial buffering. Within these Conditions, simulations of the cell model exhibit seizure-like discharges (ictal bursting). The SD was elicited by the interruption of the Na+- K+ pump activity, mimicking the effect of cellular hypoxia (an experimental protocol to elicit SD, the hypoxia-induced SD). We used the bifurcation theory and the fast-slow method to analyze the interference of K+ dynamics in the cellular excitability. This analysis indicates that the system loses its stability at a high [K+](o), transiting to an elevated state of neuronal excitability. Effects of high [K+](o), are observed in different stages of ictal bursting and SD. In the initial stage, the increase of [K+](o) creates favorable conditions to trigger both oscillatory patterns. During the neuronal activity, a continuous growth of [K+](o) by outward K+ flow depresses K+ Currents in a positive feedback way. At the last stage, due to the depression of K+ currents, the Na+-K+ pump is the main mechanism in the end of neuronal activity. Thus, this work suggests that [K+](o) dynamics may play a fundamental role in these abnormal oscillatory patterns.

The investigation of foetal reaction to internal and external conditions and stimuli is an important tool in the characterization of the developing neural integration of the foetus. An interesting example of this is the study of the interrelationship between the foetal and the maternal heart rate. Recent studies have shown a certain likelihood of occasional heart rate synchronization between mother and foetus. In the case of respiratory-induced heart rate changes, the comparison with maternal surrogates suggests that the evidence for detected synchronization is largely statistical and does not result from physiological interaction. Rather, they simply reflect a stochastic, temporary stability of two independent oscillators with time-variant frequencies. We reanalysed three datasets from that study for a more local consideration. Epochs of assumed synchronization associated with short-term regulation of the foetal heart rate were selected and compared with synchronization resulting from white noise instead of the foetal signal. Using data-driven modelling analysis, it was possible to identify the consistent influence of the heartbeat duration of maternal beats preceding the foetal beats during epochs of synchronization. These maternal beats occurred approximately one maternal respiratory cycle prior to the affected foetal beat. A similar effect could not be found in the epochs without synchronization. Simulations based on the fitted models led to a higher likelihood of synchronization in the data segments with assumed foetal-maternal interaction than in the segment without such assumed interaction. We conclude that the data-driven model-based analysis can be a useful tool for the identification of synchronization.

The analysis of baroreflex sensitivity (BRS) and heart rate variability (HRV) leads to additional insights into patients' prognosis after cardiovascular events. The following study was performed to assess the differences in the post-operative recovery of autonomic regulation after mitral valve (MV) and aortic valve (AV) surgery with a heart lung machine. Among the 43 consecutive male patients enrolled in a prospective study, 26 underwent isolated AV surgery and 17 isolated MV surgery. Blood pressure as well as ECG signals were recorded the day before, 24 hours after and one week after surgery. BRS was calculated according to the dual sequence method, and HRV was calculated using standard linear as well as nonlinear parameters. There were no major differences between the two groups in the pre-operative values. At 24 hours a comparable depression of HRV and BRS in both groups was observed, while at 7 days there was partial recovery in AV patients, which was absent in MV patients: p(AV versus MV) < 0.001. While the response of the autonomic system to surgery is similar in AV and MV patients, there is obviously a decreased ability to recover in MV patients, probably attributed to traumatic lesions of the autonomic nervous system by opening the atria. Ongoing research is required for further clarification of the pathophysiology of this phenomenon and to establish strategies to restore autonomic function.

During the last glacial period, climate records from the North Atlantic region exhibit a pronounced spectral component corresponding to a period of about 1470 years, which has attracted much attention. This spectral peak is closely related to the recurrence pattern of Dansgaard-Oeschger (DO) events. In previous studies a red noise random process, more precisely a first-order autoregressive (AR1) process, was used to evaluate the statistical significance of this peak, with a reported significance of more than 99%. Here we use a simple mechanistic two-state model of DO events, which itself was derived from a much more sophisticated ocean-atmosphere model of intermediate complexity, to numerically evaluate the spectral properties of random (i.e., solely noise-driven) events. This way we find that the power spectral density of random DO events differs fundamentally from a simple red noise random process. These results question the applicability of linear spectral analysis for estimating the statistical significance of highly non-linear processes such as DO events. More precisely, to enhance our scientific understanding about the trigger of DO events, we must not consider simple "straw men" as, for example, the AR1 random process, but rather test against realistic alternative descriptions.

Analysis of blood pressure dynamics in male and female rats using the continuous wavelet transform
(2009)

We study gender-related particularities in cardiovascular responses to stress and nitric oxide (NO) deficiency in rats using HR, mean arterial pressure (MAP) and a proposed wavelet-based approach. Blood pressure dynamics is analyzed: (1) under control conditions, (2) during immobilization stress and recovery and (3) during nitric oxide blockade by N-G-nitro-L-arginine-methyl ester (L-NAME). We show that cardiovascular sensitivity to stress and NO deficiency depends upon gender. Actually, in females the chronotropic effect of stress is more pronounced, while the pressor effect is weakened compared with males. We conclude that females demonstrate more favorable patterns of cardiovascular responses to stress and more effective NO control of cardiovascular activity than males.

In the recent article "Stochastic analysis of recurrence plots with applications to the detection of deterministic signals" (Physica D 237 (2008) 619-629), Rohde et al. stated that the performance of RQA in order to detect deterministic signals would be below traditional and well-known detectors. However, we have concerns about such a general statement. Based on our own studies we cannot confirm their conclusions. Our findings suggest that the measures of complexity provided by RQA are useful detectors outperforming well-known traditional detectors, in particular for the detection of signals of complex systems, with phase differences or signals modified due to the measurement process.

We employ a spectral decomposition method to analyze synchronization of a non-identical oscillator network. We study the case that a small parameter mismatch of oscillators is characterized by one parameter and phase synchronization is observed. We derive a linearized equation for each eigenmode of the coupling matrix. The parameter mismatch is reflected on inhomogeneous term in the linearized equation. We find that the oscillation of each mode is essentially characterized only by the eigenvalue of the coupling matrix with a suitable normalization. We refer to this property as spectral universality, because it is observed irrespective of network topology. Numerical results in various network topologies show good agreement with those based on linearized equation. This universality is also observed in a system driven by additive independent Gaussian noise.

In the recent past, recurrence quantification analysis (RQA) has gained an increasing interest in various research areas. The complexity measures the RQA provides have been useful in describing and analysing a broad range of data. It is known to be rather robust to noise and nonstationarities. Yet, one key question in empirical research concerns the confidence bounds of measured data. In the present Letter we suggest a method for estimating the confidence bounds of recurrence-based complexity measures. We study the applicability of the suggested method with model and real- life data.

Using quantities of symbolic dynamics, such as mutual information, Shannon information and algorithmic complexity, we have searched for interrelations of spikes emitted simultaneously at different frequencies during the impulsive phase of a flare event. As the spikes are related to the flare energy release and are interpreted as emissions originating at different sites having different magnetic field strengths, any relation in frequency is interpretated as a relation in space. This approach is appropriate to characterize such spatio-temporal patterns, whereas the popular estimate of fractal dimensions can be applied to low-dimensional systems only. Depending on the energy release and emission processes, two types of fragmentation are possible: a scenario of global organization (spikes are emitted in a succession of similar events by the same system) or a scenario of local organization (many systems triggered by an initial event). Mutual information which is a generalization of correlation indicates a relation in frequency beyond the bandwidth of individual spikes. The scans in the spectrograms with large mutual information also show a low level of Shannon information and algorithmic complexity, indicating that the simultaneous appearance of spikes at other frequencies is not a completely stochastic phenomenon (white noise). It may be caused by a nonlinear deterministic system or by a Markov process. By means of mutual information we find a memory over frequency intervals up to 60 MHz. Shannon information and algorithmic complexity concern the mbox{whole} frequency region, i.e. the global source region. A global organization is also apparent in quasi-periodic changes of the Shannon information and algorithmic complexity in the range of 2 - 8 seconds. The finding is compatible with a scenario of local organization in which the information of one event spreads spatially and triggers further events at different places. The region is not an ensemble of independently flashing sources, each representing a system that cascades in energy after an initial trigger. On the contrary, there is a causal connection between the sources at any time. The analysis of the four spike events suggests that the structure in frequency is not stochastic but a process in which spikes at nearby locations are simultaneously triggered by a common exciter.

We look for structural properties in the light curve of the dwarf nova SS Cyg by means of techniques from nonlinear dynamics. Applying the popular Grassberger-Procaccia procedure, Cannizzo and Goddings (1988) showed that there is no evidence for a low-dimensional attractor underlying this record. Because there are some hints for order in the light curve, we search for other signatures of deterministic systems. Therefore, we use other methods recently developed in this theory, such as local linear prediction and recurrence maps. Our main findings are: i] the prediction error grows exponentially during outburst phases, but via a power law in the quiescent states, ii] there are some rather regular patterns in this light curve which sometimes recur, but the recurrence is not regular. This leads to the following conclusions: i] The outburst dynamics shows a higher degree of order than the quiescent one. There are some hints for deterministic chaos in the outburst behavior. ii] The light curve is a complex mixture of deterministic and stochastic structures. The analysis presented in this paper shows that methods of nonlinear dynamics can be an efficient tool for the study of complex processes, even if there is no evidence for a low-dimensional attractor.

The application of chaos theory has become popular to understand the nature of various features of solar activity because most of them are far from regular. The usual approach, however, that is basing on finding low- dimensional structures of the underlying processes seems to be successful only in a few exceptional cases, such as in rather coherent phenomena as coronal pulsations. It is important to note that most phenomena in solar radio emission are more complex. We present two kinds of techniques from nonlinear dynamics which can be useful to analyse such phenomena: i] Fragmentation processes observed in solar spike events are studied by means of symbolic dynamics methods. Different measures of complexity calculated from such observations reveal that there is some order in this fragmentation. ii] Bursts are a typical transient phenomenon. To study energization processes causing impulsive microwave bursts, the wavelet analysis is applied. It exhibits structural differences of the pre- and post-impulsive phase in cases where the power spectra of both are not distinct.

The radiocarbon record that has been extended from 7199 BC to 1891 AD is of fundamental importance to understand century-scale variations of solar activity. We have, therefore, studied how to extract information from dynamic reconstructions of this observational record. Using some rather unusual methods of nonlinear dynamics, we have found that the data are significantly different from linear colored noise and that there is some evidence of nonlinear behavior. The method of recurrence plots exhibits that the grand minima of solar activity are quite different in their recurrence. Most remarkably, it suggests that the recent epoch seems to be similar to the Medieval maximum.

In one of the data mining techniques, change-point detection is of importance in evaluating time series measured in real world. For decades this technique has been developed as a nonlinear dynamics. We apply the method for detecting the change points, Singular Spectrum Transformation (SST), to the climate time series. To know where the structures of climate data sets change can reveal a climate background. In this paper we discuss the structures of precipitation data in Kenya and Wrangel Island (Arctic land) by using the SST.

Using a special technique of data analysis, we have found out 34 grand minima of solar activity obtained from a 7,700 years long Δ14C record. The method used rests on a proper filtering of the Δ14C record and the extrapolation of verifiable results for the later history back in time. Additionally, we use a method of nonlinear dynamics, the recurrence rate, to back up the results. Our findings are not contradictory to the record of solar maxima resp. minima by Eddy [5], but constitute a considerable extension. Hence, it has become possible to look closer at the validity of models. This way, we have tested several models for solar activity, esp. the model of Barnes et al. [1]. There are hints for that the grand minima might solely be driven by the 209 year period found in the Δ14C record.

We analyse the X-ray light curves of compact objects using linear and nonlinear time series analysis methods. A Power Density Spectrum (PDS) describes the overall second order properties of the observed data well. To look beyond we propose the nonlinear Q-statistic to detect an asymmetry of the time series. This allows us to find relevant time scales. This method even grants a subclassification of the known states of X-ray sources.

In the last decade, there has been an increasing interest in compensating thermally induced errors to improve the manufacturing accuracy of modular tool systems. These modular tool systems are interfaces between spindle and workpiece and consist of several complicatedly formed parts. Their thermal behavior is dominated by nonlinearities, delay and hysteresis effects even in tools with simpler geometry and it is difficult to describe it theoretically. Due to the dominant nonlinear nature of this behavior the so far used linear regression between the temperatures and the displacements is insufficient. Therefore, in this study we test the hypothesis whether we can reliably predict such thermal displacements via nonlinear temperature-displacement regression functions. These functions are estimated firstly from learning measurements using the alternating conditional expectation (ACE) algorithm and then tested on independent data sets. First, we analyze data that were generated by a finite element spindle model. We find that our approach is a powerful tool to describe the relation between temperatures and displacements for simulated data. Next, we analyze the temperature-displacement relationship in a silent real experimental setup, where the tool system is thermally forced. Again, the ACE-algorithm is powerful to estimate the deformation with high precision. The corresponding errors obtained by using the nonlinear regression approach are 10-fold lower in comparison to multiple linear regression analysis. Finally, we investigate the thermal behavior of a modular tool system in a working milling machine and get again promising results. The thermally inducedaccuracy using this nonlinear regression analysis. Therefore, this approach seems to be very useful for the development of new modular tool systems. errors can be estimated with 1-2 micrometer

In the last decade, there has been an increasing interest in compensating thermally induced errors to improve the manufacturing accuracy of modular tool systems. These modular tool systems are interfaces between spindle and workpiece and consist of several complicatedly formed parts. Their thermal behavior is dominated by nonlinearities, delay and hysteresis effects even in tools with simpler geometry and it is difficult to describe it theoretically. Due to the dominant nonlinear nature of this behavior the so far used linear regression between the temperatures and the displacements is insufficient. Therefore, in this study we test the hypothesis whether we can reliably predict such thermal displacements via nonlinear temperature-displacement regression functions. These functions are estimated firstly from learning measurements using the alternating conditional expectation (ACE) algorithm and then tested on independent data sets. First, we analyze data that were generated by a finite element spindle model. We find that our approach is a powerful tool to describe the relation between temperatures and displacements for simulated data. Next, we analyze the temperature-displacement relationship in a silent real experimental setup, where the tool system is thermally forced. Again, the ACE-algorithm is powerful to estimate the deformation with high precision. The corresponding errors obtained by using the nonlinear regression approach are 10-fold lower in comparison to multiple linear regression analysis. Finally, we investigate the thermal behavior of a modular tool system in a working milling machine and get again promising results. The thermally induced errors can be estimated with 1-2${mu m}$ accuracy using this nonlinear regression analysis. Therefore, this approach seems to be very useful for the development of new modular tool systems.

Charged dust grains in circumplanetary environments experience, beyond various deterministic forces, also stochastic perturbations caused, by fluctuations of the magnetic field, the charge of the grains, by chaotic rotation of aspherical grains, etc. Here we investigate the dynamics of a dust population in a circular orbit around a planet which is perturbed by a stochastic planetary magnetic field B', modeled by an isotropically Gaussian white noise. The resulting perturbation equations give rise to a modified diffusion of the inclinations i and eccentricities e. The diffusion coefficient is found to be D proportional to w^2 O /n^2 , where the gyrofrequency, the Kepler frequency, and the synodic frequency are denoted by w , O, and n, respectively. This behavior has been checked against numerical simulations. We have chosen dust grains (1 m in radius) ejected from Jupiter's satellite Europa in circular equatorial orbits around Jupiter and integrated numerically their trajectories over their typical lifetimes (100 years). The particles were exposed to a Gaussian fluctuating magnetic field B' with the same statistical properties as in the analytical treatment. These simulations have confirmed the analytical results. The theoretical studies showed the statistical properties of B' to be of decisive importance. To estimate them, we analyzed the magnetic field data obtained by the Galileo spacecraft magnetometer at Jupiter and found almost Gaussian fluctuations of about 5% of the mean field and exponentially decaying correlations. This results in a diffusion of orbital inclinations and eccentricities of the dust grains of about ten percent over the lifetime of the particles. For smaller dusty motes or for close-in particles (e.g., in Jovian gossamer rings) stochastics might well dominate the dynamics.

Observational data of natural systems, as measured in medical measurements are typically quite different from those obtained in laboratories. Due to the peculiarities of these data, wellknown characteristics, such as power spectra or fractal dimension, often do not provide a suitable description. To study such data, we present here some measures of complexity, which are basing on symbolic dynamics. Firstly, a motivation for using symbolic dynamics and measures of complexity in data analysis based on the logistic map is given and next, two applications to medical data are shown. We demonstrate that symbolic dynamics is a useful tool for the risk assessment of patients after myocardial infarction as well as for the evaluation of th e architecture of human cancellous bone.

The structure of time series and letter sequences is investigated using the concepts of entropy and complexity. First conditional entropy and transinformation are introduced and several generalizations are discussed. Further several measures of complexity are introduced and discussed. The capability of these concepts to describe the structure of time series and letter sequences generated by nonlinear maps, data series from meteorology, astrophysics, cardiology, cognitive psychology and finance is investigated. The relation between the complexity and the predictability of informational strings is discussed. The relation between local order and the predictability of time series is investigated.

The 300 year record of the yearly sunspot numbers and numerically generated trajectory of the solar inertial motion (SIM) were subjects of a synchronization analysis. Phase synchronization of the sunspot cycle and a fast component of the SIM have been found and confirmed with statistical significance in three epochs (1727-1757, 1802-1832 and 1863-1922) of the entire 1700-1997 record. This result can be considered as a quantitative support for the hypothesis that there is a weak interaction of gravity and solar activity.

Acoustic emission signals generated during high speed cutting of steel are investigated. The data are represen ted in time-folded form. Several methods from linear and nonlinear data analysis based on time- and frequency- domain are applied to the data and reveal signatures of the observed acoustic emission signal. These investiga tions are necessary for modeling the cutting process by means of differential equations.

In den letzten 2 Jahrzehnten des 20. Jahrhunderts hat sich mit der rasanten Entwicklung der Nichtlinearen Wissenschaften ein weiterer Umbruch vollzogen, der eine ausgepraegte Nachhaltigkeit in Wissenschaft und Technik ebenso wie in der Gesellschaft erwarten laesst. Die Nichtlinearen Wissenschaften werden auch als Nichtlineare Dynamik, Wissenschaft Komplexer Systeme oder etwas eingegrenzt Chaostheorie bezeichnet.

We analyze the variability in the x-ray lightcurves of the black hole candidate Cygnus X-1 by linear and nonlinear time series analysis methods. While a linear model describes the overall second order properties of the observed data well, surrogate data analysis reveals a significant deviation from linearity. We discuss the relation between shot noise models usually applied to analyze these data and linear stochastic autoregressive models. We debate statistical and interpretational issues of surrogate data testing for the present context. Finally, we suggest a combination of tools from linear and nonlinear time series analysis methods as a procedure to test the predictions of astrophysical models on observed data.

Using a special technique of data analysis, we have found out 34 grand minima of solar activity in a 7,700 years long C14 record. The method used rests on a proper filtering of the C14 record and the extrapolation of verifiable results for the later history back in time. Additionally, we have applied a method of nonlinear dynamics, the recurrence rate, to back up the results. Our findings are not contradictory to the record of grand minima by Eddy, but constitute a considerable extension. Hence, it has become possible to look closer at the validity of models. This way, we have tested esp. the model of Barnes et al. There are hints for that the grand minima might solely be driven by the 209--year period found in the C14 record.