### Refine

#### Year of publication

- 2006 (20) (remove)

#### Keywords

- Hypothesis Test (1)
- Phase Synchronization (1)
- Surrogate Data (1)
- Æ Recurrence Plots (1)

#### Institute

- Institut für Physik und Astronomie (20) (remove)

We show many versatile phase synchronous configurations that emerge in an array of coupled chaotic elements due to the presence of a periodic stimulus. Then, we explain the relevance of these configurations to the understanding of how information about such a. stimulus is transmitted from one side to the other in this array. The stimulus actively creates the ways to be transmitted, by making the chaotic elements to phase synchronize

The results of the theoretical consideration of stochastic resonance in overdamped bistable oscillators are given. These results are founded not on the model of two states as in [McNamara B, Wiesenfeld K. Theory of stochastic resonance. Phys Rev A 1989;39:4854-69], but on splitting of motion into regular and random and the rigorous solution of the Fokker-Planck equation for the random component. We show that this resonance is caused by a change, under the influence of noise, of the system's effective stiffness and damping factor contained in the equation for the regular component. For a certain value of the noise intensity the effective stiffness is minimal, and this fact causes non-monotonic change of the output signal amplitude as the noise intensity changes. It is important that the location of the minimum and its value depend essentially on the signal frequency.

We study synchronization behavior in networks of coupled chaotic oscillators with heterogeneous connection degrees. Our focus is on regimes away from the complete synchronization state, when the coupling is not strong enough, when the oscillators are under the influence of noise or when the oscillators are nonidentical. We have found a hierarchical organization of the synchronization behavior with respect to the collective dynamics of the network. Oscillators with more connections (hubs) are synchronized more closely by the collective dynamics and constitute the dynamical core of the network. The numerical observation of this hierarchical synchronization is supported with an analysis based on a mean field approximation and the master stability function. (C) 2006 American Institute of Physics

Graphical models applying partial coherence to multivariate time series are a powerful tool to distinguish direct and indirect interdependencies in multivariate linear systems. We carry over the concept of graphical models and partialization analysis to phase signals of nonlinear synchronizing systems. This procedure leads to the partial phase synchronization index which generalizes a bivariate phase synchronization index to the multivariate case and reveals the coupling structure in multivariate synchronizing systems by differentiating direct and indirect interactions. This ensures that no false positive conclusions are drawn concerning the interaction structure in multivariate synchronizing systems. By application to the paradigmatic model of a coupled chaotic Roessler system, the power of the partial phase synchronization index is demonstrated

Realistic networks display not only a complex topological structure, but also a heterogeneous distribution of weights in the connection strengths. Here we study synchronization in weighted complex networks and show that the synchronizability of random networks with a large minimum degree is determined by two leading parameters: the mean degree and the heterogeneity of the distribution of node's intensity, where the intensity of a node, defined as the total strength of input connections, is a natural combination of topology and weights. Our results provide a possibility for the control of synchronization in complex networks by the manipulation of a few parameters

Dynamical organization of connection weights is studied in scale-free networks of chaotic oscillators, where the coupling strength of a node from its neighbors develops adaptively according to the local synchronization property between the node and its neighbors. We find that when complete synchronization is achieved, the coupling strength becomes weighted and correlated with the topology due to a hierarchical transition to synchronization in heterogeneous networks. Importantly, such an adaptive process enhances significantly the synchronizability of the networks, which could have meaningful implications in the manipulation of dynamical networks

In this work, we reanalyze the heart rate variability (HRV) data from the 2002 Computers in Cardiology (CiC) Challenge using the concept of large-scale dimension densities and additionally apply this technique to data of healthy persons and of patients with cardiac diseases. The large-scale dimension density (LASDID) is estimated from the time series using a normalized Grassberger-Procaccia algorithm, which leads to a suitable correction of systematic errors produced by boundary effects in the rather large scales of a system. This way, it is possible to analyze rather short, nonstationary, and unfiltered data, such as HRV. Moreover, this method allows us to analyze short parts of the data and to look for differences between day and night. The circadian changes in the dimension density enable us to distinguish almost completely between real data and computer-generated data from the CiC 2002 challenge using only one parameter. In the second part we analyzed the data of 15 patients with atrial fibrillation (AF), 15 patients with congestive heart failure (CHF), 15 elderly healthy subjects (EH), as well as 18 young and healthy persons (YH). With our method we are able to separate completely the AF (rho(mu)(ls)=0.97 +/- 0.02) group from the others and, especially during daytime, the CHF patients show significant differences from the young and elderly healthy volunteers (CHF, 0.65 +/- 0.13; EH, 0.54 +/- 0.05; YH, 0.57 +/- 0.05; p < 0.05 for both comparisons). Moreover, for the CHF patients we find no circadian changes in rho(mu)(ls) (day, 0.65 +/- 0.13; night, 0.66 +/- 0.12; n.s.) in contrast to healthy controls (day, 0.54 +/- 0.05; night, 0.61 +/- 0.05; p=0.002). Correlation analysis showed no statistical significant relation between standard HRV and circadian LASDID, demonstrating a possibly independent application of our method for clinical risk stratification

Experimental evidence of anomalous phase synchronization in two diffusively coupled Chua oscillators
(2006)

We study the transition to phase synchronization in two diffusively coupled, nonidentical Chua oscillators. In the experiments, depending on the used parameterization, we observe several distinct routes to phase synchronization, including states of either in-phase, out-of-phase, or antiphase synchronization, which may be intersected by an intermediate desynchronization regime with large fluctuations of the frequency difference. Furthermore, we report the first experimental evidence of an anomalous transition to phase synchronization, which is characterized by an initial enlargement of the natural frequency difference with coupling strength. This results in a maximal frequency disorder at intermediate coupling levels, whereas usual phase synchronization via monotonic decrease in frequency difference sets in only for larger coupling values. All experimental results are supported by numerical simulations of two coupled Chua models

We describe effects of the asymmetry of cycles and non-stationarity in time series on the phase synchronization method which may lead to artifacts. We develop a modified method that overcomes these effects and apply it to study parkinsonian tremor. Our results indicate that there is synchronization between two different hands and provide information about the time delay separating their dynamics. These findings suggest that this method may be useful for detecting and quantifying weak synchronization between two non-stationary signals.

An approach is presented for coupled chaotic systems with weak coherent motion, from which we estimate the upper bound value for the absolute phase difference in phase synchronous states. This approach shows that synchronicity in phase implies synchronicity in the time of events, a characteristic explored to derive an equation to detect phase synchronization, based on the absolute difference between the time of these events. We demonstrate the potential use of this approach for the phase coherent and the funnel attractor of the Rossler system, as well as for the spiking/bursting Rulkov map.