### Refine

#### Year of publication

#### Document Type

- Article (197)
- Preprint (9)
- Postprint (6)
- Monograph/Edited Volume (4)

#### Keywords

- Complex networks (2)
- 3D medical image analysis (1)
- African climate (1)
- Chaotic System (1)
- Escherichia-coli (1)
- Event synchronization (1)
- Hypothesis Test (1)
- Indian summer monsoon (1)
- Phase Synchronization (1)
- Planetary Rings (1)
- Plio-Pleistocene (1)
- Rainfall patterns (1)
- Surrogate Data (1)
- Synchronization (1)
- Time-varying Delay (1)
- algorithms (1)
- bifurcations (1)
- climate-driven evolution (1)
- cluster-analysis (1)
- dynamical transitions (1)
- inference (1)
- models (1)
- mutual information (1)
- nonlinear time series analysis (1)
- pQCT (1)
- patient immobilization (1)
- recognition (1)
- series (1)
- synchronization (1)
- trabecular bone (1)
- unferring cellular networks (1)
- variables (1)
- Æ Recurrence Plots (1)

#### Institute

- Institut für Physik und Astronomie (216) (remove)

Realistic networks display not only a complex topological structure, but also a heterogeneous distribution of weights in the connection strengths. Here we study synchronization in weighted complex networks and show that the synchronizability of random networks with a large minimum degree is determined by two leading parameters: the mean degree and the heterogeneity of the distribution of node's intensity, where the intensity of a node, defined as the total strength of input connections, is a natural combination of topology and weights. Our results provide a possibility for the control of synchronization in complex networks by the manipulation of a few parameters

Noise-sustained and controlled synchronization of stirred excitable media by external forcing
(2005)

Most of the previous studies on constructive effects of noise in spatially extended systems have focused on static media, e.g., of the reaction diffusion type. Because many active chemical or biological processes occur in a fluid environment with mixing, we investigate here the interplay among noise, excitability, mixing and external forcing in excitable media advected by a chaotic flow, in a two-dimensional FitzHugh-Nagumo model described by a set of reaction- advection-diffusion equations. In the absence of external forcing, noise may generate sustained coherent oscillations of the media in a range of noise intensities and stirring rates. We find that these noise-sustained oscillations can be synchronized by external periodic signals much smaller than the threshold. Analysis of the locking regions in the parameter space of the signal period, stirring rate and noise intensity reveals that the mechanism underlying the synchronization behaviour is a matching between the time scales of the forcing signal and the noise-sustained oscillations. The results demonstrate that, in the presence of a suitable level of noise, the stirred excitable media act as self-sustained oscillatory systems and become much easier to be entrained by weak external forcing. Our results may be verified in experiments and are useful to understand the synchronization of population dynamics of oceanic ecological systems by annual cycles

We investigate noise-controlled resonant response of active media to weak periodic forcing, both in excitable and oscillatory regimes. In the excitable regime, we find that noise-induced irregular wave structures can be reorganized into frequency-locked resonant patterns by weak signals with suitable frequencies. The resonance occurs due to a matching condition between the signal frequency and the noise-induced inherent time scale of the media. m:1 resonant regions similar to the Arnold tongues in frequency locking of self-sustained oscillatory media are observed. In the self-sustained oscillatory regime, noise also controls the oscillation frequency and reshapes significantly the Arnold tongues. The combination of noise and weak signal thus could provide an efficient tool to manipulate active extended systems in experiments

We study synchronization behavior in networks of coupled chaotic oscillators with heterogeneous connection degrees. Our focus is on regimes away from the complete synchronization state, when the coupling is not strong enough, when the oscillators are under the influence of noise or when the oscillators are nonidentical. We have found a hierarchical organization of the synchronization behavior with respect to the collective dynamics of the network. Oscillators with more connections (hubs) are synchronized more closely by the collective dynamics and constitute the dynamical core of the network. The numerical observation of this hierarchical synchronization is supported with an analysis based on a mean field approximation and the master stability function. (C) 2006 American Institute of Physics