### Refine

#### Year of publication

#### Document Type

- Article (274)
- Postprint (10)
- Preprint (9)
- Monograph/Edited Volume (8)
- Other (1)

#### Keywords

- Complex networks (4)
- precipitation (3)
- synchronization (3)
- Event synchronization (2)
- Synchronization (2)
- channel (2)
- classification (2)
- climate networks (2)
- diffusion (2)
- events (2)
- identifying influential nodes (2)
- models (2)
- rainfall (2)
- space-dependent diffusivity (2)
- streamflow (2)
- 3D medical image analysis (1)
- African climate (1)
- Algebraic geometry (1)
- Anisotropy (1)
- Bifurcation parameters (1)
- Biomass (1)
- Calvin cycle (1)
- Chaotic System (1)
- Cold air surges (1)
- Convective storms (1)
- Dominant link directions (1)
- EEG (1)
- Escherichia-coli (1)
- Extreme events (1)
- Extreme precipitation (1)
- Extreme rainfall (1)
- Holocene (1)
- Hypothesis Test (1)
- India (1)
- Indian monsoon (1)
- Indian summer monsoon (1)
- Isochrones (1)
- K-means technique (1)
- Mesoscale systems (1)
- Multistationarity (1)
- North-Atlantic climate (1)
- Partial wavelet coherence (1)
- Phase Synchronization (1)
- Planetary Rings (1)
- Plio-Pleistocene (1)
- Precipitation (1)
- Precipitation events (1)
- Rainfall (1)
- Rainfall patterns (1)
- Regionalization (1)
- Self-organizing map (1)
- South American monsoon system (1)
- Subtropical cyclones (1)
- Surrogate Data (1)
- Teleconnection patterns (1)
- Time-varying Delay (1)
- Ungauged catchments (1)
- Wavelet power spectrum (1)
- Wavelets (1)
- algorithms (1)
- anatomical connectivity (1)
- bifurcation analysis (1)
- bifurcations (1)
- climate-driven evolution (1)
- cluster-analysis (1)
- coherence (1)
- complex systems (1)
- cortical network (1)
- desynchronization (1)
- dynamical cluster (1)
- dynamical transitions (1)
- functional connectivity (1)
- high-frequency force (1)
- inference (1)
- interdependences (1)
- intermittency (1)
- low-frequency force (1)
- mean residence time (1)
- monsoon (1)
- mutual information (1)
- networks (1)
- noise (1)
- nonlinear dynamics (1)
- nonlinear time series analysis (1)
- pQCT (1)
- patient immobilization (1)
- period doubling (1)
- periods (1)
- phase (1)
- proteasome (1)
- protein translocation (1)
- ratchets (1)
- recognition (1)
- records (1)
- recurrence plot (1)
- series (1)
- statistical physics (1)
- stochastic process (1)
- stochastic resonance (1)
- teleconnections (1)
- time (1)
- topological community (1)
- trabecular bone (1)
- unferring cellular networks (1)
- variability (1)
- variables (1)
- vibrational resonance (1)
- Æ Recurrence Plots (1)

#### Institute

- Institut für Physik und Astronomie (227)
- Interdisziplinäres Zentrum für Dynamik komplexer Systeme (48)
- Institut für Erd- und Umweltwissenschaften (15)
- Institut für Psychologie (15)
- Institut für Biochemie und Biologie (4)
- Extern (3)
- Institut für Linguistik / Allgemeine Sprachwissenschaft (3)
- Department Psychologie (2)
- Institut für Geowissenschaften (2)
- Institut für Informatik und Computational Science (2)
- Mathematisch-Naturwissenschaftliche Fakultät (2)
- Institut für Sportmedizin und Prävention (1)

Aims. Sunspot distribution in the northern and southern solar hemispheres exibit striking synchronous behaviour on the scale of a Schwabe cycle. However, sometimes the bilateral symmetry of the Butterfly diagram relative to the solar equatorial plane breaks down. The investigation of this phenomenon is important to explaining the almost-periodic behaviour of solar cycles. Methods. We use cross-recurrence plots for the study of the time-varying phase asymmetry of the northern and southern hemisphere and compare our results with the latitudinal distribution of the sunspots. Results. We observe a long-term persistence of phase leading in one of the hemispheres, which lasts almost 4 solar cycles and probably corresponds to the Gleissberg cycle. Long-term variations in the hemispheric-leading do not demonstrate clear periodicity but are strongly anti-correlated with the long-term variations in the magnetic equator.

During life bones constantly adapt their structure to their mechanical environment via a mechanically controlled process called bone remodeling. For trabecular bone, this process modifies the thickness of each trabecula leading occasionally to full resorption. We describe the irreversible dynamics of the trabecular thickness distribution (TTD) by means of a Markov chain discrete in space and time. By using thickness data from adult patients, we derive the transition probabilities in the chain. This allows a quantification, in terms of geometrical quantities, of the control of bone remodeling and thus to determine the evolution of the TTD with age.

We investigate the characteristics of time-delay systems in the presence of Gaussian noise. We show that the delay time embedded in the time series of time-delay system with constant delay cannot be estimated in the presence noise for appropriate values of noise intensity thereby forbidding any possibility of phase space reconstruction. We also demonstrate the existence of complete synchronization between two independent identical time-delay systems driven by a common noise without explicitly establishing any external coupling between them.

In the recent article "Stochastic analysis of recurrence plots with applications to the detection of deterministic signals" (Physica D 237 (2008) 619-629), Rohde et al. stated that the performance of RQA in order to detect deterministic signals would be below traditional and well-known detectors. However, we have concerns about such a general statement. Based on our own studies we cannot confirm their conclusions. Our findings suggest that the measures of complexity provided by RQA are useful detectors outperforming well-known traditional detectors, in particular for the detection of signals of complex systems, with phase differences or signals modified due to the measurement process.

Recurrence-plot-based time series analysis is widely used to study changes and transitions in the dynamics of a system or temporal deviations from its overall dynamical regime. However, most studies do not discuss the significance of the detected variations in the recurrence quantification measures. In this letter we propose a novel method to add a confidence measure to the recurrence quantification analysis. We show how this approach can be used to study significant changes in dynamical systems due to a change in control parameters, chaos-order as well as chaos-chaos transitions. Finally we study and discuss climate transitions by analysing a marine proxy record for past sea surface temperature. This paper is dedicated to the 25th anniversary of the introduction of recurrence plots.

The dynamics of noisy bistable systems is analyzed by means of Lyapunov exponents and measures of complexity. We consider both the classical Kramers problem with additive white noise and the case when the barrier fluctuates due to additional external colored noise. In case of additive noise we calculate the Lyapunov exponents and all measures of complexity analytically as functions of the noise intensity resp. the mean escape time. For the problem of fluctuating barrier the usual description of the dynamics with the mean escape time is not sufficient. The application of the concept of measures of complexity allows to describe the structures of motion in more detail. Most complexity measures sign the value of correlation time at which the phenomenon of resonant activation occurs with an extremum.

We present different tests for phase synchronization which improve the procedures currently used in the literature. This is accomplished by using a two-samples test setup and by utilizing insights and methods from directional statistics and bootstrap theory. The tests differ in the generality of the situation in which they can be applied as well as in their complexity, including computational cost. A modification of the resampling technique of the bootstrap is introduced, making it possible to fully utilize data from time series.

Phase synchronization is an important phenomenon that occurs in a wide variety of complex oscillatory processes. Measuring phase synchronization can therefore help to gain fundamental insight into nature. In this Letter we point out that synchronization analysis techniques can detect spurious synchronization, if they are fed with a superposition of signals such as in electroencephalography or magnetoencephalography data. We show how techniques from blind source separation can help to nevertheless measure the true synchronization and avoid such pitfalls

Recurrence-plot-based measures of complexity and its application to heart-rate-variability data
(2002)

The knowledge of transitions between regular, laminar or chaotic behavior is essential to understand the underlying mechanisms behind complex systems. While several linear approaches are often insufficient to describe such processes, there are several nonlinear methods which however require rather long time observations. To overcome these difficulties, we propose measures of complexity based on vertical structures in recurrence plots and apply them to the logistic map as well as to heart rate variability data. For the logistic map these measures enable us not only to detect transitions between chaotic and periodic states, but also to identify laminar states, i.e. chaos-chaos transitions. The traditional recurrence quantification analysis fails to detect the latter transitions. Applying our new measures to the heart rate variability data, we are able to detect and quantify the laminar phases before a life-threatening cardiac arrhythmia occurs thereby facilitating a prediction of such an event. Our findings could be of importance for the therapy of malignant cardiac arrhythmias.

We analyze synchronization between two interacting populations of different phase oscillators. For the important case of asymmetric coupling functions, we find a much richer dynamical behavior compared to that of symmetrically coupled populations of identical oscillators. It includes three types of bistabilities, higher order entrainment and the existence of states with unusual stability properties. All possible routes to synchronization of the populations are presented and some stability boundaries are obtained analytically. The impact of these findings for neuroscience is discussed.

In one of the data mining techniques, change-point detection is of importance in evaluating time series measured in real world. For decades this technique has been developed as a nonlinear dynamics. We apply the method for detecting the change points, Singular Spectrum Transformation (SST), to the climate time series. To know where the structures of climate data sets change can reveal a climate background. In this paper we discuss the structures of precipitation data in Kenya and Wrangel Island (Arctic land) by using the SST.

Stochastic bifurcations and coherencelike resonance in a self-sustained bistable noisy oscillator
(2010)

We investigate the influence of additive Gaussian white noise on two different bistable self-sustained oscillators: Duffing-Van der Pol oscillator with hard excitation and a model of a synthetic genetic oscillator. In the deterministic case, both oscillators are characterized with a coexistence of a stable limit cycle and a stable equilibrium state. We find that under the influence of noise, their dynamics can be well characterized through the concept of stochastic bifurcation, consisting in a qualitative change of the stationary amplitude distribution. For the Duffing-Van der Pol oscillator analytical results, obtained for a quasiharmonic approach, are compared with the result of direct computer simulations. In particular, we show that the dynamics is different for isochronous and anisochronous systems. Moreover, we find that the increase of noise intensity in the isochronous regime leads to a narrowing of the spectral line. This effect is similar to coherence resonance. However, in the case of anisochronous systems, this effect breaks down and a new phenomenon, anisochronous-based stochastic bifurcation occurs.

The method of twin surrogates has been introduced to test for phase synchronization of complex systems in the case of passive experiments. In this paper we derive new analytical expressions for the number of twins depending on the size of the neighborhood, as well as on the length of the trajectory. This allows us to determine the optimal parameters for the generation of twin surrogates. Furthermore, we determine the quality of the twin surrogates with respect to several linear and nonlinear statistics depending on the parameters of the method. In the second part of the paper we perform a hypothesis test for phase synchronization in the case of experimental data from fixational eye movements. These miniature eye movements have been shown to play a central role in neural information processing underlying the perception of static visual scenes. The high number of data sets (21 subjects and 30 trials per person) allows us to compare the generated twin surrogates with the "natural" surrogates that correspond to the different trials. We show that the generated twin surrogates reproduce very well all linear and nonlinear characteristics of the underlying experimental system. The synchronization analysis of fixational eye movements by means of twin surrogates reveals that the synchronization between the left and right eye is significant, indicating that either the centers in the brain stem generating fixational eye movements are closely linked, or, alternatively that there is only one center controlling both eyes.

We propose a RAndom Interacting Network (RAIN) model to study the interactions between a pair of complex networks. The model involves two major steps: (i) the selection of a pair of nodes, one from each network, based on intra-network node-based characteristics, and (ii) the placement of a link between selected nodes based on the similarity of their relative importance in their respective networks. Node selection is based on a selection fitness function and node linkage is based on a linkage probability defined on the linkage scores of nodes. The model allows us to relate within-network characteristics to between-network structure. We apply the model to the interaction between the USA and Schengen airline transportation networks (ATNs). Our results indicate that two mechanisms: degree-based preferential node selection and degree-assortative link placement are necessary to replicate the observed inter-network degree distributions as well as the observed inter-network assortativity. The RAIN model offers the possibility to test multiple hypotheses regarding the mechanisms underlying network interactions. It can also incorporate complex interaction topologies. Furthermore, the framework of the RAIN model is general and can be potentially adapted to various real-world complex systems.

How do diverse dynamical patterns arise from the topology of complex networks? We study synchronization dynamics in the cortical brain network of the cat, which displays a hierarchically clustered organization, by modeling each node (cortical area) with a subnetwork of interacting excitable neurons. We find that in the biologically plausible regime the dynamics exhibits a hierarchical modular organization, in particular, revealing functional clusters coinciding with the anatomical communities at different scales. Our results provide insights into the relationship between network topology and functional organization of complex brain networks.

This work focuses on the dynamics of particles in a confined geometry with position-dependent diffusivity, where the confinement is modelled by a periodic channel consisting of unit cells connected by narrow passage ways. We consider three functional forms for the diffusivity, corresponding to the scenarios of a constant (D ₀), as well as a low (D ₘ) and a high (D d) mobility diffusion in cell centre of the longitudinally symmetric cells. Due to the interaction among the diffusivity, channel shape and external force, the system exhibits complex and interesting phenomena. By calculating the probability density function, mean velocity and mean first exit time with the Itô calculus form, we find that in the absence of external forces the diffusivity D d will redistribute particles near the channel wall, while the diffusivity D ₘ will trap them near the cell centre. The superposition of external forces will break their static distributions. Besides, our results demonstrate that for the diffusivity D d, a high dependence on the x coordinate (parallel with the central channel line) will improve the mean velocity of the particles. In contrast, for the diffusivity D ₘ, a weak dependence on the x coordinate will dramatically accelerate the moving speed. In addition, it shows that a large external force can weaken the influences of different diffusivities; inversely, for a small external force, the types of diffusivity affect significantly the particle dynamics. In practice, one can apply these results to achieve a prominent enhancement of the particle transport in two- or three-dimensional channels by modulating the local tracer diffusivity via an engineered gel of varying porosity or by adding a cold tube to cool down the diffusivity along the central line, which may be a relevant effect in engineering applications. Effects of different stochastic calculi in the evaluation of the underlying multiplicative stochastic equation for different physical scenarios are discussed.