### Refine

#### Year of publication

#### Document Type

- Article (272)
- Postprint (9)
- Preprint (9)
- Monograph/Edited Volume (8)
- Other (1)

#### Keywords

- Complex networks (4)
- precipitation (3)
- synchronization (3)
- Event synchronization (2)
- Synchronization (2)
- classification (2)
- climate networks (2)
- events (2)
- identifying influential nodes (2)
- models (2)
- rainfall (2)
- streamflow (2)
- 3D medical image analysis (1)
- African climate (1)
- Algebraic geometry (1)
- Anisotropy (1)
- Bifurcation parameters (1)
- Biomass (1)
- Calvin cycle (1)
- Chaotic System (1)
- Cold air surges (1)
- Convective storms (1)
- Dominant link directions (1)
- EEG (1)
- Escherichia-coli (1)
- Extreme events (1)
- Extreme rainfall (1)
- Holocene (1)
- Hypothesis Test (1)
- Indian monsoon (1)
- Indian summer monsoon (1)
- Isochrones (1)
- K-means technique (1)
- Mesoscale systems (1)
- Multistationarity (1)
- North-Atlantic climate (1)
- Phase Synchronization (1)
- Planetary Rings (1)
- Plio-Pleistocene (1)
- Precipitation (1)
- Precipitation events (1)
- Rainfall (1)
- Rainfall patterns (1)
- Regionalization (1)
- Self-organizing map (1)
- South American monsoon system (1)
- Subtropical cyclones (1)
- Surrogate Data (1)
- Time-varying Delay (1)
- Ungauged catchments (1)
- Wavelet power spectrum (1)
- algorithms (1)
- anatomical connectivity (1)
- bifurcation analysis (1)
- bifurcations (1)
- climate-driven evolution (1)
- cluster-analysis (1)
- coherence (1)
- complex systems (1)
- cortical network (1)
- desynchronization (1)
- dynamical cluster (1)
- dynamical transitions (1)
- functional connectivity (1)
- high-frequency force (1)
- inference (1)
- interdependences (1)
- intermittency (1)
- low-frequency force (1)
- mean residence time (1)
- monsoon (1)
- mutual information (1)
- networks (1)
- noise (1)
- nonlinear dynamics (1)
- nonlinear time series analysis (1)
- pQCT (1)
- patient immobilization (1)
- period doubling (1)
- periods (1)
- phase (1)
- proteasome (1)
- protein translocation (1)
- ratchets (1)
- recognition (1)
- records (1)
- recurrence plot (1)
- series (1)
- statistical physics (1)
- stochastic process (1)
- stochastic resonance (1)
- teleconnections (1)
- time (1)
- topological community (1)
- trabecular bone (1)
- unferring cellular networks (1)
- variability (1)
- variables (1)
- vibrational resonance (1)
- Æ Recurrence Plots (1)

#### Institute

- Institut für Physik und Astronomie (224)
- Interdisziplinäres Zentrum für Dynamik komplexer Systeme (48)
- Institut für Erd- und Umweltwissenschaften (15)
- Institut für Psychologie (15)
- Institut für Biochemie und Biologie (4)
- Extern (3)
- Institut für Linguistik / Allgemeine Sprachwissenschaft (3)
- Department Psychologie (2)
- Institut für Geowissenschaften (2)
- Institut für Informatik und Computational Science (2)
- Mathematisch-Naturwissenschaftliche Fakultät (2)
- Institut für Sportmedizin und Prävention (1)

We propose a new autonomous dynamical system of dimension N=4 that demonstrates the regime of stable two- frequency motions and period-doubling bifurcations of a two-dimensional torus. It is shown that the period-doubling bifurcation of the two-dimensional torus is not followed by the resonance phenomenon, and the two-dimensional ergodic torus undergoes a period-doubling bifurcation. The interaction of two generators is also analyzed. The phenomenon of external and mutual synchronization of two-frequency oscillations is observed, for which winding number locking on a two- dimensional torus takes place

Hydrologic regionalization deals with the investigation of homogeneity in watersheds and provides a classification of watersheds for regional analysis. The classification thus obtained can be used as a basis for mapping data from gauged to ungauged sites and can improve extreme event prediction. This paper proposes a wavelet power spectrum (WPS) coupled with the self-organizing map method for clustering hydrologic catchments. The application of this technique is implemented for gauged catchments. As a test case study, monthly streamflow records observed at 117 selected catchments throughout the western United States from 1951 through 2002. Further, based on WPS of each station, catchments are classified into homogeneous clusters, which provides a representative WPS pattern for the streamflow stations in each cluster.

We report on the effect of vibrational resonance in a spatially extended system of coupled noisy oscillators under the action of two periodic forces, a low-frequency one (signal) and a high-frequency one (carrier). Vibrational resonance manifests itself in the fact that for optimally selected values of high-frequency force amplitude, the response of the system to a low-frequency signal is optimal. This phenomenon is a synthesis of two effects, a noise- induced phase transition leading to bistability, and a conventional vibrational resonance, resulting in the optimization of signal processing. Numerical simulations, which demonstrate this effect for an extended system, can be understood by means of a zero-dimensional "effective" model. The behavior of this "effective" model is also confirmed by an experimental realization of an electronic circuit.

We study the overdamped version of two coupled anharmonic oscillators under the influence of both low- and high-frequency forces respectively and a Gaussian noise term added to one of the two state variables of the system. The dynamics of the system is first studied in the presence of both forces separately without noise. In the presence of only one of the forces, no resonance behaviour is observed, however, hysteresis happens there. Then the influence of the high-frequency force in the presence of a low-frequency, i.e. biharmonic forcing, is studied. Vibrational resonance is found to occur when the amplitude of the high-frequency force is varied. The resonance curve resembles a stochastic resonance-like curve. It is maximum at the value of g at which the orbit lies in one well during one half of the drive cycle of the low-frequency force and in the other for the remaining half cycle. Vibrational resonance is characterized using the response amplitude and mean residence time. We show the occurrence of stochastic resonance behaviour in the overdamped system by replacing the high-frequency force by Gaussian noise. Similarities and differences between both types of resonance are presented. (c) 2006 Elsevier B.V. All rights reserved.

We investigate the relationship between the loss of synchronization and the onset of shadowing breakdown via unstable dimension variability in complex systems. In the neighborhood of the critical transition to strongly nonhyperbolic behavior, the system undergoes on-off intermittency with respect to the synchronization state. There are potentially severe consequences of these facts on the validity of the computer-generated trajectories obtained from dynamical systems whose synchronization manifolds share the same nonhyperbolic properties

An approach is presented for coupled chaotic systems with weak coherent motion, from which we estimate the upper bound value for the absolute phase difference in phase synchronous states. This approach shows that synchronicity in phase implies synchronicity in the time of events, a characteristic explored to derive an equation to detect phase synchronization, based on the absolute difference between the time of these events. We demonstrate the potential use of this approach for the phase coherent and the funnel attractor of the Rossler system, as well as for the spiking/bursting Rulkov map.

Untitled
(2004)

Background: Inferring regulatory interactions between genes from transcriptomics time-resolved data, yielding reverse engineered gene regulatory networks, is of paramount importance to systems biology and bioinformatics studies. Accurate methods to address this problem can ultimately provide a deeper insight into the complexity, behavior, and functions of the underlying biological systems. However, the large number of interacting genes coupled with short and often noisy time-resolved read-outs of the system renders the reverse engineering a challenging task. Therefore, the development and assessment of methods which are computationally efficient, robust against noise, applicable to short time series data, and preferably capable of reconstructing the directionality of the regulatory interactions remains a pressing research problem with valuable applications.
Results: Here we perform the largest systematic analysis of a set of similarity measures and scoring schemes within the scope of the relevance network approach which are commonly used for gene regulatory network reconstruction from time series data. In addition, we define and analyze several novel measures and schemes which are particularly suitable for short transcriptomics time series. We also compare the considered 21 measures and 6 scoring schemes according to their ability to correctly reconstruct such networks from short time series data by calculating summary statistics based on the corresponding specificity and sensitivity. Our results demonstrate that rank and symbol based measures have the highest performance in inferring regulatory interactions. In addition, the proposed scoring scheme by asymmetric weighting has shown to be valuable in reducing the number of false positive interactions. On the other hand, Granger causality as well as information-theoretic measures, frequently used in inference of regulatory networks, show low performance on the short time series analyzed in this study.
Conclusions: Our study is intended to serve as a guide for choosing a particular combination of similarity measures and scoring schemes suitable for reconstruction of gene regulatory networks from short time series data. We show that further improvement of algorithms for reverse engineering can be obtained if one considers measures that are rooted in the study of symbolic dynamics or ranks, in contrast to the application of common similarity measures which do not consider the temporal character of the employed data. Moreover, we establish that the asymmetric weighting scoring scheme together with symbol based measures (for low noise level) and rank based measures (for high noise level) are the most suitable choices.

Realistic networks display not only a complex topological structure, but also a heterogeneous distribution of weights in the connection strengths. Here we study synchronization in weighted complex networks and show that the synchronizability of random networks with a large minimum degree is determined by two leading parameters: the mean degree and the heterogeneity of the distribution of node's intensity, where the intensity of a node, defined as the total strength of input connections, is a natural combination of topology and weights. Our results provide a possibility for the control of synchronization in complex networks by the manipulation of a few parameters

We present an approach to generate (multivariate) twin surrogates (TS) based on recurrence properties. This technique generates surrogates which correspond to an independent copy of the underlying system, i.e. they induce a trajectory of the underlying system starting at different initial conditions. We show that these surrogates are well suited to test for complex synchronisation and exemplify this for the paradigmatic system of Rossler oscillators. The proposed test enables to assess the statistical relevance of a synchronisation analysis from passive experiments which are typical in natural systems

We present an approach to generate (multivariate) twin surrogates (TS) based on recurrence properties. This technique generates surrogates which correspond to an independent copy of the underlying system, i. e. they induce a trajectory of the underlying system starting at different initial conditions. We show that these surrogates are well suited to test for complex synchronisation and exemplify this for the paradigmatic system of R¨ossler oscillators. The proposed test enables to assess the statistical relevance of a synchronisation analysis from passive experiments which are typical in natural systems.

The transition from fully synchronized behavior to two-cluster dynamics is investigated for a system of N globally coupled chaotic oscillators by means of a model of two coupled logistic maps. An uneven distribution of oscillators between the two clusters causes an asymmetry to arise in the coupling of the model system. While the transverse period-doubling bifurcation remains essentially unaffected by this asymmetry, the transverse pitchfork bifurcation is turned into a saddle-node bifurcation followed by a transcritical riddling bifurcation in which a periodic orbit embedded in the synchronized chaotic state loses its transverse stability. We show that the transcritical riddling transition is always hard. For this, we study the sequence of bifurcations that the asynchronous point cycles produced in the saddle-node bifurcation undergo, and show how the manifolds of these cycles control the magnitude of asynchronous bursts. In the case where the system involves two subpopulations of oscillators with a small mismatch of the parameters, the transcritical riddling will be replaced by two subsequent saddle-node bifurcations, or the saddle cycle involved in the transverse destabilization of the synchronized chaotic state may smoothly shift away from the synchronization manifold. In this way, the transcritical riddling bifurcation is substituted by a symmetry-breaking bifurcation, which is accompanied by the destruction of a thin invariant region around the symmetrical chaotic state.

This paper employs a complex network approach to determine the topology and evolution of the network of extreme precipitation that governs the organization of extreme rainfall before, during, and after the Indian Summer Monsoon (ISM) season. We construct networks of extreme rainfall events during the ISM (June-September), post-monsoon (October-December), and pre-monsoon (March-May) periods from satellite-derived (Tropical Rainfall Measurement Mission, TRMM) and rain-gauge interpolated (Asian Precipitation Highly Resolved Observational Data Integration Towards the Evaluation of Water Resources, APHRODITE) data sets. The structure of the networks is determined by the level of synchronization of extreme rainfall events between different grid cells throughout the Indian subcontinent. Through the analysis of various complex-network metrics, we describe typical repetitive patterns in North Pakistan (NP), the Eastern Ghats (EG), and the Tibetan Plateau (TP). These patterns appear during the pre-monsoon season, evolve during the ISM, and disappear during the post-monsoon season. These are important meteorological features that need further attention and that may be useful in ISM timing and strength prediction.

We apply the recently developed symbolic resonance analysis to electroencephalographic measurements of event- related brain potentials (ERPs) in a language processing experiment by using a three-symbol static encoding with varying thresholds for analyzing the ERP epochs, followed by a spin-flip transformation as a nonlinear filter. We compute an estimator of the signal-to-noise ratio (SNR) for the symbolic dynamics measuring the coherence of threshold-crossing events. Hence, we utilize the inherent noise of the EEG for sweeping the underlying ERP components beyond the encoding thresholds. Plotting the SNR computed within the time window of a particular ERP component (the N400) against the encoding thresholds, we find different resonance curves for the experimental conditions. The maximal differences of the SNR lead to the estimation of optimal encoding thresholds. We show that topographic brain maps of the optimal threshold voltages and of their associated coherence differences are able to dissociate the underlying physiological processes, while corresponding maps gained from the customary voltage averaging technique are unable to do so

Forecasting the onset and withdrawal of the Indian summer monsoon is crucial for the life and prosperity of more than one billion inhabitants of the Indian subcontinent. However, accurate prediction of monsoon timing remains a challenge, despite numerous efforts. Here we present a method for prediction of monsoon timing based on a critical transition precursor. We identify geographic regions-tipping elements of the monsoon-and use them as observation locations for predicting onset and withdrawal dates. Unlike most predictability methods, our approach does not rely on precipitation analysis but on air temperature and relative humidity, which are well represented both in models and observations. The proposed method allows to predict onset 2 weeks earlier and withdrawal dates 1.5 months earlier than existing methods. In addition, it enables to correctly forecast monsoon duration for some anomalous years, often associated with El Nino-Southern Oscillation.

Many cellular processes require decision making mechanisms, which must act reliably even in the unavoidable presence of substantial amounts of noise. However, the multistable genetic switches that underlie most decision-making processes are dominated by fluctuations that can induce random jumps between alternative cellular states. Here we show, via theoretical modeling of a population of noise-driven bistable genetic switches, that reliable timing of decision-making processes can be accomplished for large enough population sizes, as long as cells are globally coupled by chemical means. In the light of these results, we conjecture that cell proliferation, in the presence of cell-cell communication, could provide a mechanism for reliable decision making in the presence of noise, by triggering cellular transitions only when the whole cell population reaches a certain size. In other words , the summation performed by the cell population would average out the noise and reduce its detrimental impact.

Three-dimensional quantification of structures in trabecular bone using measures of complexity
(2009)

The study of pathological changes of bone is an important task in diagnostic procedures of patients with metabolic bone diseases such as osteoporosis as well as in monitoring the health state of astronauts during long-term space flights. The recent availability of high-resolution three-dimensional (3D) imaging of bone challenges the development of data analysis techniques able to assess changes of the 3D microarchitecture of trabecular bone. We introduce an approach based on spatial geometrical properties and define structural measures of complexity for 3D image analysis. These measures evaluate different aspects of organization and complexity of 3D structures, such as complexity of its surface or shape variability. We apply these measures to 3D data acquired by high-resolution microcomputed tomography (mu CT) from human proximal tibiae and lumbar vertebrae at different stages of osteoporotic bone loss. The outcome is compared to the results of conventional static histomorphometry and exhibits clear relationships between the analyzed geometrical features of trabecular bone and loss of bone density, but also indicate that the measures reveal additional information about the structural composition of bone, which were not revealed by the static histomorphometry. Finally, we have studied the dependency of the developed measures of complexity on the spatial resolution of the mu CT data sets.

We study possible interrelations between the 300-year record of the yearly sunspot numbers and the solar inertial motion (SIM) using the recently developed technique of synchronization analysis. Phase synchronization of the sunspot cycle and the SIM is found and statistically confirmed in three epochs (1734-1790, 1855-1875 and 1907-1960) of the whole period 1700-2000. These results give quantitative support to the hypothesis that there is a weak interaction between the solar activity and the SIM.

The scaling behavior of rainfall has been extensively studied both in terms of event magnitudes and in terms of spatial extents of the events. Different heavy-tailed distributions have been proposed as candidates for both instances, but statistically rigorous treatments are rare. Here we combine the domains of event magnitudes and event area sizes by a spatiotemporal integration of 3-hourly rain rates corresponding to extreme events derived from the quasi-global high-resolution rainfall product Tropical Rainfall Measuring Mission 3B42. A maximum likelihood evaluation reveals that the distribution of spatiotemporally integrated extreme rainfall cluster sizes over the oceans is best described by a truncated power law, calling into question previous statements about scale-free distributions. The observed subpower law behavior of the distribution's tail is evaluated with a simple generative model, which indicates that the exponential truncation of an otherwise scale-free spatiotemporal cluster size distribution over the oceans could be explained by the existence of land masses on the globe.

Experimental evidences point Out the participation of nonsynaptic mechanisms (e.g., fluctuations in extracellular tons) in epileptiform bursting and spreading depression (SD). During these abnormal oscillatory patterns, it is observed an increase of extracellular potassium concentration [K+](o) and a decrease of extracellular calcium concentration [Ca2+](o) which raises the neuronal excitability. However, whether the high [K+](o) triggers and propagates these abnormal neuronal activities or plays a secondary role into this process is unclear. To better understand the influence of extracellular potassium dynamics in these oscillatory patterns, the experimental conditions of high [K+](o) and zero [Ca2+](o) were replicated in an extended Golomb model where we added important regulatory mechanisms of ion concentration as Na+-K+ pump, ion diffusion and glial buffering. Within these Conditions, simulations of the cell model exhibit seizure-like discharges (ictal bursting). The SD was elicited by the interruption of the Na+- K+ pump activity, mimicking the effect of cellular hypoxia (an experimental protocol to elicit SD, the hypoxia-induced SD). We used the bifurcation theory and the fast-slow method to analyze the interference of K+ dynamics in the cellular excitability. This analysis indicates that the system loses its stability at a high [K+](o), transiting to an elevated state of neuronal excitability. Effects of high [K+](o), are observed in different stages of ictal bursting and SD. In the initial stage, the increase of [K+](o) creates favorable conditions to trigger both oscillatory patterns. During the neuronal activity, a continuous growth of [K+](o) by outward K+ flow depresses K+ Currents in a positive feedback way. At the last stage, due to the depression of K+ currents, the Na+-K+ pump is the main mechanism in the end of neuronal activity. Thus, this work suggests that [K+](o) dynamics may play a fundamental role in these abnormal oscillatory patterns.

We present different tests for phase synchronization which improve the procedures currently used in the literature. This is accomplished by using a two-samples test setup and by utilizing insights and methods from directional statistics and bootstrap theory. The tests differ in the generality of the situation in which they can be applied as well as in their complexity, including computational cost. A modification of the resampling technique of the bootstrap is introduced, making it possible to fully utilize data from time series.

We present different tests for phase synchronization which improve the procedures currently used in the literature. This is accomplished by using a two-sample test setup and by utilizing insights and methods from directional statistics and bootstrap theory. The tests differ in the generality of the situation in which they can be applied as well as in their complexity, including computational cost. A modification of the resampling technique of the bootstrap is introduced, making it possible to fully utilize data from time series

The radiocarbon record that has been extended from 7199 BC to 1891 AD is of fundamental importance to understand century-scale variations of solar activity. We have, therefore, studied how to extract information from dynamic reconstructions of this observational record. Using some rather unusual methods of nonlinear dynamics, we have found that the data are significantly different from linear colored noise and that there is some evidence of nonlinear behavior. The method of recurrence plots exhibits that the grand minima of solar activity are quite different in their recurrence. Most remarkably, it suggests that the recent epoch seems to be similar to the Medieval maximum.

The investigation of foetal reaction to internal and external conditions and stimuli is an important tool in the characterization of the developing neural integration of the foetus. An interesting example of this is the study of the interrelationship between the foetal and the maternal heart rate. Recent studies have shown a certain likelihood of occasional heart rate synchronization between mother and foetus. In the case of respiratory-induced heart rate changes, the comparison with maternal surrogates suggests that the evidence for detected synchronization is largely statistical and does not result from physiological interaction. Rather, they simply reflect a stochastic, temporary stability of two independent oscillators with time-variant frequencies. We reanalysed three datasets from that study for a more local consideration. Epochs of assumed synchronization associated with short-term regulation of the foetal heart rate were selected and compared with synchronization resulting from white noise instead of the foetal signal. Using data-driven modelling analysis, it was possible to identify the consistent influence of the heartbeat duration of maternal beats preceding the foetal beats during epochs of synchronization. These maternal beats occurred approximately one maternal respiratory cycle prior to the affected foetal beat. A similar effect could not be found in the epochs without synchronization. Simulations based on the fitted models led to a higher likelihood of synchronization in the data segments with assumed foetal-maternal interaction than in the segment without such assumed interaction. We conclude that the data-driven model-based analysis can be a useful tool for the identification of synchronization.

We investigate the cognitive control in polyrhythmic hand movements as a model paradigm for bimanual coordination. Using a symbolic coding of the recorded time series, we demonstrate the existence of qualitative transitions induced by experimental manipulation of the tempo. A nonlinear model with delayed feedback control is proposed, which accounts for these dynamical transitions in terms of bifurcations resulting from variation of the external control parameter. Furthermore, it is shown that transitions can also be observed due to fluctuations in the timing control level. We conclude that the complexity of coordinated bimanual movements results from interactions between nonlinear control mechanisms with delayed feedback and stochastic timing components.

Synthetic multicellular oscillatory systems controlling protein dynamics with genetic circuits
(2011)

Synthetic biology is a relatively new research discipline that combines standard biology approaches with the constructive nature of engineering. Thus, recent efforts in the field of synthetic biology have given a perspective to consider cells as 'programmable matter'. Here, we address the possibility of using synthetic circuits to control protein dynamics. In particular, we show how intercellular communication and stochasticity can be used to manipulate the dynamical behavior of a population of coupled synthetic units and, in this manner, finely tune the expression of specific proteins of interest, e.g. in large bioreactors.

We investigate the influence of noise on synchronization between the spiking activities of neurons with external impulsive forces. We first analyze the dependence of the synchronized firing on the amplitude and the angular frequency of the impulsive force in the noise-free system. Three cases (regular spiking, traveling wave, and chaotic spiking) with low synchronized firing are chosen to study effects due to noise. In each case we find that small noise can be a promoter of synchronization phenomena in neural activities, by choosing an appropriate noise intensity acting on some of the neurons. (C) 2005 American Institute of Physics

We study phase synchronization effects in a chain of nonidentical chaotic oscillators with a type-I intermittent behavior. Two types of parameter distribution, linear and random, are considered. The typical phenomena are the onset and existence of global (all-to-all) and cluster (partial) synchronization with increase of coupling. Increase of coupling strength can also lead to desynchronization phenomena, i.e., global or cluster synchronization is changed into a regime where synchronization is intermittent with incoherent states. Then a regime of a fully incoherent nonsynchronous state (spatiotemporal intermittency) appears. Synchronization-desynchronization transitions with increase of coupling are also demonstrated for a system resembling an intermittent one: a chain of coupled maps replicating the spiking behavior of neurobiological networks

Synchronization transitions in coupled time-delay electronic circuits with a threshold nonlinearity
(2011)

Experimental observations of typical kinds of synchronization transitions are reported in unidirectionally coupled time-delay electronic circuits with a threshold nonlinearity and two time delays, namely feedback delay tau(1) and coupling delay tau(2). We have observed transitions from anticipatory to lag via complete synchronization and their inverse counterparts with excitatory and inhibitory couplings, respectively, as a function of the coupling delay tau(2). The anticipating and lag times depend on the difference between the feedback and the coupling delays. A single stability condition for all the different types of synchronization is found to be valid as the stability condition is independent of both the delays. Further, the existence of different kinds of synchronizations observed experimentally is corroborated by numerical simulations and from the changes in the Lyapunov exponents of the coupled time-delay systems.

Being one of the fundamental phenomena in nonlinear science, synchronization of oscillations has permanently remained an object of intensive research. Development of many asymptotic methods and numerical simulations has allowed an understanding and explanation of various phenomena of self-synchronization. But even in the classical case of coupled van der Pol oscillators a full description of all possible dynamical regimes, their mutual transitions and characteristics is still lacking. We present here a study of the phenomenon of mutual synchronization for two non-scalar- coupled non-identical limit-cycle oscillators and analyze phase, frequency and amplitude characteristics of synchronization regimes. A series of bifurcation diagrams that we obtain exhibit various regions of qualitatively different behavior. Among them we find mono-, bi- and multistability regions, beating and "oscillation death" ones; also a region, where one of the oscillators dominates the other one is observed. The frequency characteristics that we obtain reveal three qualitatively different types of synchronization: (i) on the mean frequency (the in-phase synchronization), (ii) with a shift from the mean frequency caused by a conservative coupling term (the anti-phase synchronization), and (iii) on the frequency of one of the oscillators (when one oscillator dominates the other). (C) 2003 Elsevier B.V. All rights reserved

We analyze synchronization between two interacting populations of different phase oscillators. For the important case of asymmetric coupling functions, we find a much richer dynamical behavior compared to that of symmetrically coupled populations of identical oscillators. It includes three types of bistabilities, higher order entrainment and the existence of states with unusual stability properties. All possible routes to synchronization of the populations are presented and some stability boundaries are obtained analytically. The impact of these findings for neuroscience is discussed.

We present experimental and numerical evidence of synchronization of burst events in two different modulated CO2 lasers. Bursts appear randomly in each laser as trains of large amplitude spikes intercalated by a small amplitude chaotic regime. Experimental data and model show the frequency locking of bursts in a suitable interval of coupling strength. We explain the mechanism of this phenomenon and demonstrate the inhibitory properties of the implemented coupling.

In the present paper, two kinds of dynamical complex networks are considered. The first is that elements of every node have different time delays but all nodes in Such networks have the same time-delay vector. The second is that different nodes have different time-delay vectors, and the elements of each node also have different time delays. Corresponding synchronization theorems are established. Numerical examples show the efficiency of the derived theorems.

In this paper, we study the complete synchronization of a class of time-varying delayed coupled chaotic systems using feedback control. In terms of Linear Matrix Inequalities, a sufficient condition is obtained through using a Lyapunov-Krasovskii functional and differential equation in equalities. The conditions can be easily verified and implemented. We present two simulation examples to illustrate the effectiveness of the proposed method.

Starting from an initial wiring of connections, we show that the synchronizability of a network can be significantly improved by evolving the graph along a time dependent connectivity matrix. We consider the case of connectivity matrices that commute at all times, and compare several approaches to engineer the corresponding commutative graphs. In particular, we show that synchronization in a dynamical network can be achieved even in the case in which each individual commutative graphs does not give rise to synchronized behavior

In this article we review the application of the synchronization theory to the analysis of multivariate biological signals. We address the problem of phase estimation from data and detection and quantification of weak interaction, as well as quantification of the direction of coupling. We discuss the potentials as well as limitations and misinterpretations of the approach

We present two different approaches to detect and quantify phase synchronization in the case of coupled non- phase coherent oscillators. The first one is based on the general idea of curvature of an arbitrary curve. The second one is based on recurrences of the trajectory in phase space. We illustrate both methods in the paradigmatic example of the Rossler system in the funnel regime. We show that the second method is applicable even in the case of noisy data. Furthermore, we extend the second approach to the application of chains of coupled systems, which allows us to detect easily clusters of synchronized oscillators. In order to illustrate the applicability of this approach, we show the results of the algorithm applied to experimental data from a population of 64 electrochemical oscillators

We analyse time series from a study on bimanual rhythmic movements in which the speed of performance (the external control parameter) was experimentally manipulated. Using symbolic transformations as a visualization technique we observe qualitative changes in the dynamics of the timing patterns. Such phase transitions are quantitatively described by measures of complexity. Using these results we develop an advanced symbolic coding which enables us to detect important dynamical structures. Furthermore, our analysis raises new questions concerning the modelling of the underlying human cognitive-motor system.

Observational data of natural systems, as measured in medical measurements are typically quite different from those obtained in laboratories. Due to the peculiarities of these data, wellknown characteristics, such as power spectra or fractal dimension, often do not provide a suitable description. To study such data, we present here some measures of complexity, which are basing on symbolic dynamics. Firstly, a motivation for using symbolic dynamics and measures of complexity in data analysis based on the logistic map is given and next, two applications to medical data are shown. We demonstrate that symbolic dynamics is a useful tool for the risk assessment of patients after myocardial infarction as well as for the evaluation of th e architecture of human cancellous bone.

Fourier surrogate data are artificially generated time series, that - based on a resampling scheme - share the linear properties with an observed time series. In this paper we study a statistical surrogate hypothesis test to detect deviations from a linear Gaussian process with respect to asymmetry in time (Q-statistic). We apply this test to a Fourier representable function and obtain a representation of the asymmetry in time of the sample data, a characteristic for nonlinear processes, and the significance in terms of the Fourier coefficients. The main outcome is that we calculate the expected value of the mean and the standard deviation of the asymmetries of the surrogate data analytically and hence, no surrogates have to be generated. To illustrate the results we apply our method to the saw tooth function, the Lorenz system and to measured X-ray data of Cygnus X-1

Recent research using the complex network approach has revealed a rich and complicated network topology in the cortical connectivity of mammalian brains. It is of importance to understand the implications of such complex network structures in the functional organization of the brain activities. Here we study this problem from the viewpoint of dynamical complex networks. We investigate synchronization dynamics on the corticocortical network of the cat by modeling each node (cortical area) of the network with a sub-network of interacting excitable neurons. We find that the network displays clustered synchronization behavior, and the dynamical clusters coincide with the topological community structures observed in the anatomical network. Our results provide insights into the relationship between the global organization and the functional specialization of the brain cortex.

We study the noise-dependent dynamics in a chain of four very stiff excitable oscillators of the FitzHugh- Nagumo type locally coupled by inhibitor diffusion. We could demonstrate frequency- and noise-selective signal acceptance which is based on several noise-supported stochastic attractors that arise owing to slow variable diffusion between identical excitable elements. The attractors have different average periods distinct from that of an isolated oscillator and various phase relations between the elements. We explain the correspondence between the noise-supported stochastic attractors and the observed resonance peaks in the curves for the linear response versus signal frequency. (C) 2005 American Institute of Physics

Charged dust grains in circumplanetary environments experience, beyond various deterministic forces, also stochastic perturbations caused, by fluctuations of the magnetic field, the charge of the grains, by chaotic rotation of aspherical grains, etc. Here we investigate the dynamics of a dust population in a circular orbit around a planet which is perturbed by a stochastic planetary magnetic field B', modeled by an isotropically Gaussian white noise. The resulting perturbation equations give rise to a modified diffusion of the inclinations i and eccentricities e. The diffusion coefficient is found to be D proportional to w^2 O /n^2 , where the gyrofrequency, the Kepler frequency, and the synodic frequency are denoted by w , O, and n, respectively. This behavior has been checked against numerical simulations. We have chosen dust grains (1 m in radius) ejected from Jupiter's satellite Europa in circular equatorial orbits around Jupiter and integrated numerically their trajectories over their typical lifetimes (100 years). The particles were exposed to a Gaussian fluctuating magnetic field B' with the same statistical properties as in the analytical treatment. These simulations have confirmed the analytical results. The theoretical studies showed the statistical properties of B' to be of decisive importance. To estimate them, we analyzed the magnetic field data obtained by the Galileo spacecraft magnetometer at Jupiter and found almost Gaussian fluctuations of about 5% of the mean field and exponentially decaying correlations. This results in a diffusion of orbital inclinations and eccentricities of the dust grains of about ten percent over the lifetime of the particles. For smaller dusty motes or for close-in particles (e.g., in Jovian gossamer rings) stochastics might well dominate the dynamics.

Stochastic bifurcations and coherencelike resonance in a self-sustained bistable noisy oscillator
(2010)

We investigate the influence of additive Gaussian white noise on two different bistable self-sustained oscillators: Duffing-Van der Pol oscillator with hard excitation and a model of a synthetic genetic oscillator. In the deterministic case, both oscillators are characterized with a coexistence of a stable limit cycle and a stable equilibrium state. We find that under the influence of noise, their dynamics can be well characterized through the concept of stochastic bifurcation, consisting in a qualitative change of the stationary amplitude distribution. For the Duffing-Van der Pol oscillator analytical results, obtained for a quasiharmonic approach, are compared with the result of direct computer simulations. In particular, we show that the dynamics is different for isochronous and anisochronous systems. Moreover, we find that the increase of noise intensity in the isochronous regime leads to a narrowing of the spectral line. This effect is similar to coherence resonance. However, in the case of anisochronous systems, this effect breaks down and a new phenomenon, anisochronous-based stochastic bifurcation occurs.

In this paper we show that delay embedding produces spurious structures in a recurrence plot (RP) that are not present in the real attractor. We analyze typical sets of simulated data, such as white noise and data from the chaotic Rossler system to show the relevance of this effect. In the second part of the paper we show that the second order Renyi entropy and the correlation dimension are dynamical invariants that can be estimated from Recurrence Plots with arbitrary embedding dimension and delay

We employ a spectral decomposition method to analyze synchronization of a non-identical oscillator network. We study the case that a small parameter mismatch of oscillators is characterized by one parameter and phase synchronization is observed. We derive a linearized equation for each eigenmode of the coupling matrix. The parameter mismatch is reflected on inhomogeneous term in the linearized equation. We find that the oscillation of each mode is essentially characterized only by the eigenvalue of the coupling matrix with a suitable normalization. We refer to this property as spectral universality, because it is observed irrespective of network topology. Numerical results in various network topologies show good agreement with those based on linearized equation. This universality is also observed in a system driven by additive independent Gaussian noise.

We study numerically the behavior of the autocorrelation function (ACF) and the power spectrum of spiral attractors without and in the presence of noise. It is shown that the ACF decays exponentially and has two different time scales. The rate of the ACF decrease is defined by the amplitude fluctuations on small time intervals, i.e., when tau < tau(cor), and by the effective diffusion coefficient of the instantantaneous phase on large time intervals. it is also demonstrated that the ACF in the Poincare map also decreases according to the exponential law exp(-lambda(+)k), where lambda(+) is the positive Lyapunov exponent. The obtained results are compared with the theory of fluctuations for the Van der Pol oscillator

Spatiotemporal dynamics of the Calvin cycle multistationarity and symmetry breaking instabilities
(2011)

The possibility of controlling the Calvin cycle has paramount implications for increasing the production of biomass. Multistationarity, as a dynamical feature of systems, is the first obvious candidate whose control could find biotechnological applications. Here we set out to resolve the debate on the multistationarity of the Calvin cycle. Unlike the existing simulation-based studies, our approach is based on a sound mathematical framework, chemical reaction network theory and algebraic geometry, which results in provable results for the investigated model of the Calvin cycle in which we embed a hierarchy of realistic kinetic laws. Our theoretical findings demonstrate that there is a possibility for multistationarity resulting from two sources, homogeneous and inhomogeneous instabilities, which partially settle the debate on multistability of the Calvin cycle. In addition, our tractable analytical treatment of the bifurcation parameters can be employed in the design of validation experiments.

We study the effects of parametric noise on a lattice network, which is locally modeled by a two-dimensional Rulkov map. We conclude that at some intermediate noise intensity, parametric noise can induce ordered circular patterns, which indicates the appearance of spatiotemporal coherence resonance in the studied lattice. With the observation of coherence-like manner in linear spatial cross-correlation, the coherence phenomena can be analyzed quantitatively.

The South American Andes are frequently exposed to intense rainfall events with varying moisture sources and precipitation-forming processes. In this study, we assess the spatiotemporal characteristics and geographical origins of rainfall over the South American continent. Using high-spatiotemporal resolution satellite data (TRMM 3B42 V7), we define four different types of rainfall events based on their (1) high magnitude, (2) long temporal extent, (3) large spatial extent, and (4) high magnitude, long temporal and large spatial extent combined. In a first step, we analyze the spatiotemporal characteristics of these events over the entire South American continent and integrate their impact for the main Andean hydrologic catchments. Our results indicate that events of type 1 make the overall highest contributions to total seasonal rainfall (up to 50%). However, each consecutive episode of the infrequent events of type 4 still accounts for up to 20% of total seasonal rainfall in the subtropical Argentinean plains. In a second step, we employ complex network theory to unravel possibly non-linear and long-ranged climatic linkages for these four event types on the high-elevation Altiplano-Puna Plateau as well as in the main river catchments along the foothills of the Andes. Our results suggest that one to two particularly large squall lines per season, originating from northern Brazil, indirectly trigger large, long-lasting thunderstorms on the Altiplano Plateau. In general, we observe that extreme rainfall in the catchments north of approximately 20 degrees S typically originates from the Amazon Basin, while extreme rainfall at the eastern Andean foothills south of 20 degrees S and the Puna Plateau originates from southeastern South America.

Spatial recurrence plots
(2006)

We propose an extension of the recurrence plot concept to perform quantitative analyzes of roughness and disorder of spatial patterns at a fixed time. We introduce spatial recurrence plots (SRPs) as a graphical representation of the pointwise correlation matrix, in terms of a two-dimensional spatial return plot. This technique is applied to the study of complex patterns generated by coupled map lattices, which are characterized by measures of complexity based on SRPs. We show that the complexity measures we propose for SRPs provide a systematic way of investigating the distribution of spatially coherent structures, such as synchronization domains, in lattice profiles. This approach has potential for many more applications, e.g., in surface roughness analyzes

We demonstrate the occurrence of regimes with singular continuous (fractal) Fourier spectra in autonomous dissipative dynamical systems. The particular example in an ODE system at the accumulation points of bifurcation sequences associated to the creation of complicated homoclinic orbits. Two different machanisms responsible for the appearance of such spectra are proposed. In the first case when the geometry of the attractor is symbolically represented by the Thue-Morse sequence, both the continuous-time process and its descrete Poincaré map have singular power spectra. The other mechanism owes to the logarithmic divergence of the first return times near the saddle point; here the Poincaré map possesses the discrete spectrum, while the continuous-time process displays the singular one. A method is presented for computing the multifractal characteristics of the singular continuous spectra with the help of the usual Fourier analysis technique.

Understanding the functional dynamics of the mammalian brain is one of the central aims of modern neuroscience. Mathematical modeling and computational simulations of neural networks can help in this quest. In recent publications, a multilevel model has been presented to simulate the resting-state dynamics of the cortico-cortical connectivity of the mammalian brain. In the present work we investigate how much of the dynamical behavior of the multilevel model can be reproduced by a strongly simplified model. We find that replacing each cortical area by a single Rulkov map recreates the patterns of dynamical correlation of the multilevel model, while the outcome of other models and setups mainly depends on the local network properties, e. g. the input degree of each vertex. In general, we find that a simple simulation whose dynamics depends on the global topology of the whole network is far from trivial. A systematic analysis of different dynamical models and coupling setups is required.

We have recently reported the phenomenon of doubly stochastic resonance [Phys. Rev. Lett. 85, 227 (2000)], a synthesis of noise-induced transition and stochastic resonance. The essential feature of this phenomenon is that multiplicative noise induces a bimodality and additive noise causes stochastic resonance behavior in the induced structure. In the present paper we outline possible applications of this effect and design a simple lattice of electronic circuits for the experimental realization of doubly stochastic resonance.

Similar power laws for foreshock and aftershock sequences in a spring block model for earthquakes
(1999)

Acoustic emission signals generated during high speed cutting of steel are investigated. The data are represen ted in time-folded form. Several methods from linear and nonlinear data analysis based on time- and frequency- domain are applied to the data and reveal signatures of the observed acoustic emission signal. These investiga tions are necessary for modeling the cutting process by means of differential equations.

We investigate the bifurcation structures in a two-dimensional parameter space (PS) of a parametrically excited system with two degrees of freedom both analytically and numerically. By means of the Renyi entropy of second order K-2, which is estimated from recurrence plots, we uncover that regions of chaotic behavior are intermingled with many complex periodic windows, such as shrimp structures in the PS. A detailed numerical analysis shows that, the stable solutions lose stability either via period doubling, or via intermittency when the parameters leave these shrimps in different directions, indicating different bifurcation properties of the boundaries. The shrimps of different sizes offer promising ways to control the dynamics of such a complex system.

Ventricular tachycardia or fibrillation (VT-VF) as fatal cardiac arrhythmias are the main factors triggering sudden cardiac death. The objective of this study is to find early signs of sustained VT-VF in patients with an implanted cardioverter-defibrillator (ICD). These devices are able to safeguard patients by returning their hearts to a normal rhythm via strong defibrillatory shocks; additionally, they store the 1000 beat-to-beat intervals immediately before the onset of a life-threatening arrhythmia. We study these 1000 beat-to-beat intervals of 17 chronic heart failure ICD patients before the onset of a life-threatening arrhythmia and at a control time, i.e., without a VT-VF event. To characterize these rather short data sets, we calculate heart rate variability parameters from the time and frequency domain, from symbolic dynamics as well as the finite-time growth rates. We find that neither the time nor the frequency domain parameters show significant differences between the VT-VF and the control time series. However, two parameters from symbolic dynamics as well as the finite-time growth rates discriminate significantly both groups. These findings could be of importance in algorithms for next generation ICD's to improve the diagnostics and therapy of VT-VF.

In this Letter, we show that coherence and phase synchronization analysis are sensitive but not specific in detecting the correct class of underlying dynamics. We propose procedures to increase specificity and demonstrate the power of the approach by application to paradigmatic dynamic model systems. (c) 2006 Elsevier B.V. All rights reserved

Seismic quiescence as an indicator for large earthquakes in a system of self-organized criticality
(2000)

Two deterministic processes leading to roughening interfaces are considered. It is shown that the dynamics of linear perturbations of turbulent regimes in coupled map lattices is governed by a discrete version of the Kardar-Parisi-Zhang equation. The asymptotic scaling behavior of the perturbation field is investigated in the case of large lattices. Secondly, the dynamics of an order-disorder interface is modelled with a simple two-dimensional coupled map lattice, possesing a turbulent and a laminar state. It is demonstrated, that in some range of parameters the spreading of the turbulent state is accompanied by kinetic roughening of the interface.

The results of the theoretical consideration of stochastic resonance in overdamped bistable oscillators are given. These results are founded not on the model of two states as in [McNamara B, Wiesenfeld K. Theory of stochastic resonance. Phys Rev A 1989;39:4854-69], but on splitting of motion into regular and random and the rigorous solution of the Fokker-Planck equation for the random component. We show that this resonance is caused by a change, under the influence of noise, of the system's effective stiffness and damping factor contained in the equation for the regular component. For a certain value of the noise intensity the effective stiffness is minimal, and this fact causes non-monotonic change of the output signal amplitude as the noise intensity changes. It is important that the location of the minimum and its value depend essentially on the signal frequency.

The response of scale-free networks with community structure to external stimuli is studied. By disturbing some nodes with different strategies, it is shown that the robustness of this kind of network can be enhanced due to the existence of communities in the networks. Some of the response patterns are found to coincide with topological communities. We show that such phenomena also occur in the cat brain network which is an example of a scale-free like network with community structure. Our results provide insights into the relationship between network topology and the functional organization in complex networks from another viewpoint.

We investigate noise-controlled resonant response of active media to weak periodic forcing, both in excitable and oscillatory regimes. In the excitable regime, we find that noise-induced irregular wave structures can be reorganized into frequency-locked resonant patterns by weak signals with suitable frequencies. The resonance occurs due to a matching condition between the signal frequency and the noise-induced inherent time scale of the media. m:1 resonant regions similar to the Arnold tongues in frequency locking of self-sustained oscillatory media are observed. In the self-sustained oscillatory regime, noise also controls the oscillation frequency and reshapes significantly the Arnold tongues. The combination of noise and weak signal thus could provide an efficient tool to manipulate active extended systems in experiments

We study phase synchronization in a network motif with a starlike structure in which the central node's (the hub's) frequency is strongly detuned against the other peripheral nodes. We find numerically and experimentally a regime of remote synchronization (RS), where the peripheral nodes form a phase synchronized cluster, while the hub remains free with its own dynamics and serves just as a transmitter for the other nodes. We explain the mechanism for this RS by the existence of a free amplitude and also show that systems with a fixed or constant amplitude, such as the classic Kuramoto phase oscillator, are not able to generate this phenomenon. Further, we derive an analytic expression which supports our explanation of the mechanism.

Recurrence-plot-based measures of complexity and its application to heart-rate-variability data
(2002)

The knowledge of transitions between regular, laminar or chaotic behavior is essential to understand the underlying mechanisms behind complex systems. While several linear approaches are often insufficient to describe such processes, there are several nonlinear methods which however require rather long time observations. To overcome these difficulties, we propose measures of complexity based on vertical structures in recurrence plots and apply them to the logistic map as well as to heart rate variability data. For the logistic map these measures enable us not only to detect transitions between chaotic and periodic states, but also to identify laminar states, i.e. chaos-chaos transitions. The traditional recurrence quantification analysis fails to detect the latter transitions. Applying our new measures to the heart rate variability data, we are able to detect and quantify the laminar phases before a life-threatening cardiac arrhythmia occurs thereby facilitating a prediction of such an event. Our findings could be of importance for the therapy of malignant cardiac arrhythmias.

Ventricular tachycardia or fibrillation (VT) as fatal cardiac arrhythmias are the main factors triggering sudden cardiac death. The objective of this recurrence quantification analysis approach is to find early signs of sustained VT in patients with an implanted cardioverter-defibrillator (ICD). These devices are able to safeguard patients by returning their hearts to a normal rhythm via strong defibrillatory shocks; additionally, they are able to store at least 1000 beat-to-beat intervals immediately before the onset of a life-threatening arrhythmia. We study the

Recurrence-plot-based time series analysis is widely used to study changes and transitions in the dynamics of a system or temporal deviations from its overall dynamical regime. However, most studies do not discuss the significance of the detected variations in the recurrence quantification measures. In this letter we propose a novel method to add a confidence measure to the recurrence quantification analysis. We show how this approach can be used to study significant changes in dynamical systems due to a change in control parameters, chaos-order as well as chaos-chaos transitions. Finally we study and discuss climate transitions by analysing a marine proxy record for past sea surface temperature. This paper is dedicated to the 25th anniversary of the introduction of recurrence plots.