### Refine

#### Year of publication

#### Document Type

- Article (276)
- Postprint (10)
- Preprint (9)
- Monograph/edited volume (8)
- Other (1)

#### Keywords

- Complex networks (5)
- Event synchronization (3)
- precipitation (3)
- synchronization (3)
- Extreme rainfall (2)
- Synchronization (2)
- channel (2)
- classification (2)
- climate networks (2)
- diffusion (2)

#### Institute

- Institut für Physik und Astronomie (228)
- Interdisziplinäres Zentrum für Dynamik komplexer Systeme (48)
- Institut für Geowissenschaften (18)
- Department Psychologie (17)
- Institut für Biochemie und Biologie (4)
- Department Linguistik (3)
- Extern (3)
- Institut für Informatik und Computational Science (2)
- Mathematisch-Naturwissenschaftliche Fakultät (2)
- Department Sport- und Gesundheitswissenschaften (1)

Many cellular processes require decision making mechanisms, which must act reliably even in the unavoidable presence of substantial amounts of noise. However, the multistable genetic switches that underlie most decision-making processes are dominated by fluctuations that can induce random jumps between alternative cellular states. Here we show, via theoretical modeling of a population of noise-driven bistable genetic switches, that reliable timing of decision-making processes can be accomplished for large enough population sizes, as long as cells are globally coupled by chemical means. In the light of these results, we conjecture that cell proliferation, in the presence of cell-cell communication, could provide a mechanism for reliable decision making in the presence of noise, by triggering cellular transitions only when the whole cell population reaches a certain size. In other words , the summation performed by the cell population would average out the noise and reduce its detrimental impact.

We present different tests for phase synchronization which improve the procedures currently used in the literature. This is accomplished by using a two-samples test setup and by utilizing insights and methods from directional statistics and bootstrap theory. The tests differ in the generality of the situation in which they can be applied as well as in their complexity, including computational cost. A modification of the resampling technique of the bootstrap is introduced, making it possible to fully utilize data from time series.

A method for the multivariate analysis of statistical phase synchronization phenomena in empirical data is presented. A first statistical approach is complemented by a stochastic dynamic model, to result in a data analysis algorithm which can in a specific sense be shown to be a generic multivariate statistical phase synchronization analysis. The method is applied to EEG data from a psychological experiment, obtaining results which indicate the relevance of this method in the context of cognitive science as well as in other fields.

Two deterministic processes leading to roughening interfaces are considered. It is shown that the dynamics of linear perturbations of turbulent regimes in coupled map lattices is governed by a discrete version of the Kardar-Parisi-Zhang equation. The asymptotic scaling behavior of the perturbation field is investigated in the case of large lattices. Secondly, the dynamics of an order-disorder interface is modelled with a simple two-dimensional coupled map lattice, possesing a turbulent and a laminar state. It is demonstrated, that in some range of parameters the spreading of the turbulent state is accompanied by kinetic roughening of the interface.

We have used techniques of nonlinear dynamics to compare a special model for the reversals of the Earth's magnetic field with the observational data. Although this model is rather simple, there is no essential difference to the data by means of well-known characteristics, such as correlation function and probability distribution. Applying methods of symbolic dynamics we have found that the considered model is not able to describe the dynamical properties of the observed process. These significant differences are expressed by algorithmic complexity and Renyi information.

In the modern industrialized countries every year several hundred thousands of people die due to the sudden cardiac death. The individual risk for this sudden cardiac death cannot be defined precisely by common available, non-invasive diagnostic tools like Holter-monitoring, highly amplified ECG and traditional linear analysis of heart rate variability (HRV). Therefore, we apply some rather unconventional methods of nonlinear dynamics to analyse the HRV. Especially, some complexity measures that are basing on symbolic dynamics as well as a new measure, the renormalized entropy, detect some abnormalities in the HRV of several patients who have been classified in the low risk group by traditional methods. A combination of these complexity measures with the parameters in the frequency domain seems to be a promising way to get a more precise definition of the individual risk. These findings have to be validated by a representative number of patients.

Using a special technique of data analysis, we have found out 34 grand minima of solar activity obtained from a 7,700 years long Δ14C record. The method used rests on a proper filtering of the Δ14C record and the extrapolation of verifiable results for the later history back in time. Additionally, we use a method of nonlinear dynamics, the recurrence rate, to back up the results. Our findings are not contradictory to the record of solar maxima resp. minima by Eddy [5], but constitute a considerable extension. Hence, it has become possible to look closer at the validity of models. This way, we have tested several models for solar activity, esp. the model of Barnes et al. [1]. There are hints for that the grand minima might solely be driven by the 209 year period found in the Δ14C record.

The dynamics of noisy bistable systems is analyzed by means of Lyapunov exponents and measures of complexity. We consider both the classical Kramers problem with additive white noise and the case when the barrier fluctuates due to additional external colored noise. In case of additive noise we calculate the Lyapunov exponents and all measures of complexity analytically as functions of the noise intensity resp. the mean escape time. For the problem of fluctuating barrier the usual description of the dynamics with the mean escape time is not sufficient. The application of the concept of measures of complexity allows to describe the structures of motion in more detail. Most complexity measures sign the value of correlation time at which the phenomenon of resonant activation occurs with an extremum.

We investigate the cognitive control in polyrhythmic hand movements as a model paradigm for bimanual coordination. Using a symbolic coding of the recorded time series, we demonstrate the existence of qualitative transitions induced by experimental manipulation of the tempo. A nonlinear model with delayed feedback control is proposed, which accounts for these dynamical transitions in terms of bifurcations resulting from variation of the external control parameter. Furthermore, it is shown that transitions can also be observed due to fluctuations in the timing control level. We conclude that the complexity of coordinated bimanual movements results from interactions between nonlinear control mechanisms with delayed feedback and stochastic timing components.

Contents: 1 Introduction 2 Experiment 3 Data 4 Symbolic dynamics 4.1 Symbolic dynamics as a tool for data analysis 4.2 2-symbols coding 4.3 3-symbols coding 5 Measures of complexity 5.1 Word statistics 5.2 Shannon entropy 6 Testing for stationarity 6.1 Stationarity 6.2 Time series of cycle durations 6.3 Chi-square test 7 Control parameters in the production of rhythms 8 Analysis of relative phases 9 Discussion 10 Outlook