Time-dependent processes are often analyzed using the power spectral density (PSD) calculated by taking an appropriate Fourier transform of individual trajectories and finding the associated ensemble average. Frequently, the available experimental datasets are too small for such ensemble averages, and hence, it is of a great conceptual and practical importance to understand to which extent relevant information can be gained from S(f, T), the PSD of a single trajectory. Here we focus on the behavior of this random, realization-dependent variable parametrized by frequency f and observation time T, for a broad family of anomalous diffusions-fractional Brownian motion with Hurst index H-and derive exactly its probability density function. We show that S(f, T) is proportional-up to a random numerical factor whose universal distribution we determine-to the ensemble-averaged PSD. For subdiffusion (H < 1/2), we find that S(f, T) similar to A/f(2H+1) with random amplitude A. In sharp contrast, for superdiffusion (H > 1/2) S(f, T) similar to BT2H-1/f(2) with random amplitude B. Remarkably, for H > 1/2 the PSD exhibits the same frequency dependence as Brownian motion, a deceptive property that may lead to false conclusions when interpreting experimental data. Notably, for H > 1/2 the PSD is ageing and is dependent on T. Our predictions for both sub-and superdiffusion are confirmed by experiments in live cells and in agarose hydrogels and by extensive simulations.

Leveraging large-deviation statistics to decipher the stochastic properties of measured trajectories
(2021)

Extensive time-series encoding the position of particles such as viruses, vesicles, or individualproteins are routinely garnered insingle-particle tracking experiments or supercomputing studies.They contain vital clues on how viruses spread or drugs may be delivered in biological cells.Similar time-series are being recorded of stock values in financial markets and of climate data.Such time-series are most typically evaluated in terms of time-averaged mean-squareddisplacements (TAMSDs), which remain random variables for finite measurement times. Theirstatistical properties are different for differentphysical stochastic processes, thus allowing us toextract valuable information on the stochastic process itself. To exploit the full potential of thestatistical information encoded in measured time-series we here propose an easy-to-implementand computationally inexpensive new methodology, based on deviations of the TAMSD from itsensemble average counterpart. Specifically, we use the upper bound of these deviations forBrownian motion (BM) to check the applicability of this approach to simulated and real data sets.By comparing the probability of deviations fordifferent data sets, we demonstrate how thetheoretical bound for BM reveals additional information about observed stochastic processes. Weapply the large-deviation method to data sets of tracer beads tracked in aqueous solution, tracerbeads measured in mucin hydrogels, and of geographic surface temperature anomalies. Ouranalysis shows how the large-deviation properties can be efficiently used as a simple yet effectiveroutine test to reject the BM hypothesis and unveil relevant information on statistical propertiessuch as ergodicity breaking and short-time correlations.

Leveraging large-deviation statistics to decipher the stochastic properties of measured trajectories
(2021)

The power spectral density (PSD) of any time-dependent stochastic processX (t) is ameaningful feature of its spectral content. In its text-book definition, the PSD is the Fourier transform of the covariance function of X-t over an infinitely large observation timeT, that is, it is defined as an ensemble-averaged property taken in the limitT -> infinity. Alegitimate question is what information on the PSD can be reliably obtained from single-trajectory experiments, if one goes beyond the standard definition and analyzes the PSD of a single trajectory recorded for a finite observation timeT. In quest for this answer, for a d-dimensional Brownian motion (BM) we calculate the probability density function of a single-trajectory PSD for arbitrary frequency f, finite observation time T and arbitrary number k of projections of the trajectory on different axes. We show analytically that the scaling exponent for the frequency-dependence of the PSD specific to an ensemble of BM trajectories can be already obtained from a single trajectory, while the numerical amplitude in the relation between the ensemble-averaged and single-trajectory PSDs is afluctuating property which varies from realization to realization. The distribution of this amplitude is calculated exactly and is discussed in detail. Our results are confirmed by numerical simulations and single-particle tracking experiments, with remarkably good agreement. In addition we consider a truncated Wiener representation of BM, and the case of a discrete-time lattice random walk. We highlight some differences in the behavior of a single-trajectory PSD for BM and for the two latter situations. The framework developed herein will allow for meaningful physical analysis of experimental stochastic trajectories.