### Refine

The primary motivation for systematic bases in first principles electronic structure simulations is to derive physical and chemical properties of molecules and solids with predetermined accuracy. This requires a detailed understanding of the asymptotic behaviour of many-particle Coulomb systems near coalescence points of particles. Singular analysis provides a convenient framework to study the asymptotic behaviour of wavefunctions near these singularities. In the present work, we want to introduce the mathematical framework of singular analysis and discuss a novel asymptotic parametrix construction for Hamiltonians of many-particle Coulomb systems. This corresponds to the construction of an approximate inverse of a Hamiltonian operator with remainder given by a so-called Green operator. The Green operator encodes essential asymptotic information and we present as our main result an explicit asymptotic formula for this operator. First applications to many-particle models in quantum chemistry are presented in order to demonstrate the feasibility of our approach. The focus is on the asymptotic behaviour of ladder diagrams, which provide the dominant contribution to shortrange correlation in coupled cluster theory. Furthermore, we discuss possible consequences of our asymptotic analysis with respect to adaptive wavelet approximation.

We study a new approach to determine the asymptotic behaviour of quantum many-particle systems near coalescence points of particles which interact via singular Coulomb potentials. This problem is of fundamental interest in electronic structure theory in order to establish accurate and efficient models for numerical simulations. Within our approach, coalescence points of particles are treated as embedded geometric singularities in the configuration space of electrons. Based on a general singular pseudo-differential calculus, we provide a recursive scheme for the calculation of the parametrix and corresponding Green operator of a nonrelativistic Hamiltonian. In our singular calculus, the Green operator encodes all the asymptotic information of the eigenfunctions. Explicit calculations and an asymptotic representation for the Green operator of the hydrogen atom and isoelectronic ions are presented.

The primary motivation for systematic bases in first principles electronic structure simulations is to derive physical and chemical properties of molecules and solids with predetermined accuracy. This requires a detailed understanding of the asymptotic behaviour of many-particle Coulomb systems near coalescence points of particles. Singular analysis provides a convenient framework to study the asymptotic behaviour of wavefunctions near these singularities. In the present work, we want to introduce the mathematical framework of singular analysis and discuss a novel asymptotic parametrix construction for Hamiltonians of many-particle Coulomb systems. This corresponds to the construction of an approximate inverse of a Hamiltonian operator with remainder given by a so-called Green operator. The Green operator encodes essential asymptotic information and we present as our main result an explicit asymptotic formula for this operator. First applications to many-particle models in quantum chemistry are presented in order to demonstrate the feasibility of our approach. The focus is on the asymptotic behaviour of ladder diagrams, which provide the dominant contribution to short-range correlation in coupled cluster theory. Furthermore, we discuss possible consequences of our asymptotic analysis with respect to adaptive wavelet approximation.

We study the asymptotic regularity of solutions of Hartree-Fock equations for Coulomb systems. In order to deal with singular Coulomb potentials, Fock operators are discussed within the calculus of pseudo-differential operators on conical manifolds. First, the non-self-consistent-field case is considered which means that the functions that enter into the nonlinear terms are not the eigenfunctions of the Fock operator itself. We introduce asymptotic regularity conditions on the functions that build up the Fock operator which guarantee ellipticity for the local part of the Fock operator on the open stretched cone R+ × S². This proves existence of a parametrix with a corresponding smoothing remainder from which it follows, via a bootstrap argument, that the eigenfunctions of the Fock operator again satisfy asymptotic regularity conditions. Using a fixed-point approach based on Cances and Le Bris analysis of the level-shifting algorithm, we show via another bootstrap argument, that the corresponding self-consistent-field solutions of the Hartree-Fock equation have the same type of asymptotic regularity.