### Refine

#### Keywords

We comprehensively analyze the emergence of anomalous statistics in the context of the random relaxation ( RARE) model [Eliazar and Metzler, J. Chem. Phys. 137, 234106 ( 2012)], a recently introduced versatile model of random relaxations in random environments. The RARE model considers excitations scattered randomly across a metric space around a reaction center. The excitations react randomly with the center, the reaction rates depending on the excitations' distances from this center. Relaxation occurs upon the first reaction between an excitation and the center. Addressing both the relaxation time and the relaxation range, we explore when these random variables display anomalous statistics, namely, heavy tails at zero and at infinity that manifest, respectively, exceptionally high occurrence probabilities of very small and very large outliers. A cohesive set of closed-form analytic results is established, determining precisely when such anomalous statistics emerge.

This paper introduces and analyses a general statistical model, termed the RAndom RElaxations (RARE) model, of random relaxation processes in disordered systems. The model considers excitations that are randomly scattered around a reaction center in a general embedding space. The model's input quantities are the spatial scattering statistics of the excitations around the reaction center, and the chemical reaction rates between the excitations and the reaction center as a function of their mutual distance. The framework of the RARE model is versatile and a detailed stochastic analysis of the random relaxation processes is established. Analytic results regarding the duration and the range of the random relaxation processes, as well as the model's thermodynamic limit, are obtained in closed form. In particular, the case of power-law inputs, which turn out to yield stretched exponential relaxation patterns and asymptotically Paretian relaxation ranges, is addressed in detail.