### Refine

#### Year of publication

#### Document Type

- Article (56)
- Monograph/Edited Volume (1)
- Doctoral Thesis (1)

We establish a quantitative relationship between the entanglement content of a single quantum chain at a critical point and the corresponding entropy of entanglement. We find that, surprisingly, the leading critical scaling of the single-copy entanglement with respect to any bipartitioning is exactly one-half of the entropy of entanglement, in a general setting of conformal field theory and quasifree systems. Conformal symmetry imposes that the single-copy entanglement scales as E-1(rho(L))=(c/6)ln L-(c/6)(pi(2)/ln L)+O(1/L), where L is the number of constituents in a block of an infinite chain and c denotes the central charge. This shows that from a single specimen of a critical chain, already half the entanglement can be distilled compared to the rate that is asymptotically available. The result is substantiated by a quantitative analysis for all translationally invariant quantum spin chains corresponding to all isotropic quasifree fermionic models. An example of the XY spin chain shows that away from criticality the above relation is maintained only near the quantum phase transition

We demonstrate that the entropy of entanglement and the distillable entanglement of regions with respect to the rest of a general harmonic-lattice system in the ground or a thermal state scale at most as the boundary area of the region. This area law is rigorously proven to hold true in noncritical harmonic-lattice systems of arbitrary spatial dimension, for general finite-ranged harmonic interactions, regions of arbitrary shape, and states of nonzero temperature. For nearest-neighbor interactions-corresponding to the Klein-Gordon case-upper and lower bounds to the degree of entanglement can be stated explicitly for arbitrarily shaped regions, generalizing the findings of Phys. Rev. Lett. 94, 060503 (2005). These higher-dimensional analogs of the analysis of block entropies in the one-dimensional case show that under general conditions, one can expect an area law for the entanglement in noncritical harmonic many-body systems. The proofs make use of methods from entanglement theory, as well as of results on matrix functions of block- banded matrices. Disordered systems are also considered. We moreover construct a class of examples for which the two- point correlation length diverges, yet still an area law can be proven to hold. We finally consider the scaling of classical correlations in a classical harmonic system and relate it to a quantum lattice system with a modified interaction. We briefly comment on a general relationship between criticality and area laws for the entropy of entanglement

We investigate the relationship between the gap between the energy of the ground state and the first excited state and the decay of correlation functions in harmonic lattice systems. We prove that in gapped systems, the exponential decay of correlations follows for both the ground state and thermal states. Considering the converse direction, we show that an energy gap can follow from algebraic decay and always does for exponential decay. The underlying lattices are described as general graphs of not necessarily integer dimension, including translationally invariant instances of cubic lattices as special cases. Any local quadratic couplings in position and momentum coordinates are allowed for, leading to quasi-free ( Gaussian) ground states. We make use of methods of deriving bounds to matrix functions of banded matrices corresponding to local interactions on general graphs. Finally, we give an explicit entanglement-area relationship in terms of the energy gap for arbitrary, not necessarily contiguous regions on lattices characterized by general graphs

We address the question of the multiplicativity of the maximal p-norm output purities of bosonic Gaussian channels under Gaussian inputs. We focus on general Gaussian channels resulting from the reduction of unitary dynamics in larger Hilbert spaces. It is shown that the maximal output purity of tensor products of single-mode channels under Gaussian inputs is multiplicative for any p is an element of (1, infinity) for products of arbitrary identical channels as well as for a large class of products of different channels. In the case of p=2, multiplicativity is shown to be true for arbitrary products of generic channels acting on any number of modes

We consider the single-copy entanglement as a quantity to assess quantum correlations in the ground state in quantum many-body systems. We show for a large class of models that already on the level of single specimens of spin chains, criticality is accompanied with the possibility of distilling a maximally entangled state of arbitrary dimension from a sufficiently large block deterministically, with local operations and classical communication. These analytical results-which refine previous results on the divergence of block entropy as the rate at which maximally entangled pairs can be distilled from many identically prepared chains-are made quantitative for general isotropic translationally invariant spin chains that can be mapped onto a quasifree fermionic system, and for the anisotropic XY model. For the XX model, we provide the asymptotic scaling of similar to(1/6)log(2)(L), and contrast it with the block entropy

In this Letter, the problem of finding optimal success probabilities of linear optics quantum gates is linked to the theory of convex optimization. It is shown that by exploiting this link, upper bounds for the success probability of networks realizing single-mode gates can be derived, which hold in generality for postselected networks of arbitrary size, any number of auxiliary modes, and arbitrary photon numbers. As a corollary, the previously formulated conjecture is proven that the optimal success probability of a nonlinear sign shift without feedforward is 1/4, a gate playing the central role in the scheme of Knill-Laflamme-Milburn for quantum computation. The concept of Lagrange duality is shown to be applicable to provide rigorous proofs for such bounds, although the original problem is a difficult nonconvex problem in infinitely many objective variables. The versatility of this approach is demonstrated

Matrix product states and their continuous analogues are variational classes of states that capture quantum many-body systems or quantum fields with low entanglement; they are at the basis of the density-matrix renormalization group method and continuous variants thereof. In this work we show that, generically, N-point functions of arbitrary operators in discrete and continuous translation invariant matrix product states are completely characterized by the corresponding two- and three-point functions. Aside from having important consequences for the structure of correlations in quantum states with low entanglement, this result provides a new way of reconstructing unknown states from correlation measurements, e. g., for one-dimensional continuous systems of cold atoms. We argue that such a relation of correlation functions may help in devising perturbative approaches to interacting theories.

Gaussification and entanglement distillation of continuous-variable systems a unifying picture
(2012)

Distillation of entanglement using only Gaussian operations is an important primitive in quantum communication, quantum repeater architectures, and distributed quantum computing. Existing distillation protocols for continuous degrees of freedom are only known to converge to a Gaussian state when measurements yield precisely the vacuum outcome. In sharp contrast, non-Gaussian states can be deterministically converted into Gaussian states while preserving their second moments, albeit by usually reducing their degree of entanglement. In this work-based on a novel instance of a noncommutative central limit theorem-we introduce a picture general enough to encompass the known protocols leading to Gaussian states, and new classes of protocols including multipartite distillation. This gives the experimental option of balancing the merits of success probability against entanglement produced.

Entangled inputs can enhance the capacity of quantum channels, this being one of the consequences of the celebrated result showing the nonadditivity of several quantities relevant for quantum information science. In this work, we answer the converse question (whether entangled inputs can ever render noisy quantum channels to have maximum capacity) to the negative: No sophisticated entangled input of any quantum channel can ever enhance the capacity to the maximum possible value, a result that holds true for all channels both for the classical as well as the quantum capacity. This result can hence be seen as a bound as to how "nonadditive quantum information can be.'' As a main result, we find first practical and remarkably simple computable single-shot bounds to capacities, related to entanglement measures. As examples, we discuss the qubit amplitude damping and identify the first meaningful bound for its classical capacity.

In this work, we show how Gibbs or thermal states appear dynamically in closed quantum many-body systems, building on the program of dynamical typicality. We introduce a novel perturbation theorem for physically relevant weak system-bath couplings that is applicable even in the thermodynamic limit. We identify conditions under which thermalization happens and discuss the underlying physics. Based on these results, we also present a fully general quantum algorithm for preparing Gibbs states on a quantum computer with a certified runtime and error bound. This complements quantum Metropolis algorithms, which are expected to be efficient but have no known runtime estimates and only work for local Hamiltonians.