### Refine

#### Year of publication

#### Keywords

- Answer set programming (1)
- Theory (1)
- belief merging (1)
- belief revision (1)
- program encodings (1)
- strong equivalence (1)

An Extended Query language for action languages (and its application to aggregates and preferences)
(2006)

Reiter's default logic is one of the best known and most studied of the approaches to nonmonotonic reasoning. Several variants of default logic have subsequently been proposed to give systems with properties differing from the original. In this paper, we examine the relationship between default logic and its major variants. We accomplish this by translating a default theory under a variant interpretation into a second default theory, under the original Reiter semantics, wherein the variant interpretation is respected. That is, in each case we show that, given an extension of a translated theory, one may extract an extension of the original variant default logic theory. We show how constrained, rational, justified, and cumulative default logic can be expressed in Reiter's default logic. As well, we show how Reiter's default logic can be expressed in rational default logic. From this, we suggest that any such variant can be similarly treated. Consequently, we provide a unification of default logics, showing how the original formulation of default logic may express its variants. Moreover, the translations clearly express the relationships between alternative approaches to default logic. The translations themselves are shown to generally have good properties. Thus, in at least a theoretical sense, we show that these variants are in a sense superfluous, in that for any of these variants of default logic, we can exactly mimic the behaviour of a variant in standard default logic. As well, the translations lend insight into means of classifying the expressive power of default logic variants; specifically we suggest that the property of semi-monotonicity represents a division with respect to expressibility, whereas regularity and cumulativity do not

We address the problem of belief change in (nonmonotonic) logic programming under answer set semantics. Our formal techniques are analogous to those of distance-based belief revision in propositional logic. In particular, we build upon the model theory of logic programs furnished by SE interpretations, where an SE interpretation is a model of a logic program in the same way that a classical interpretation is a model of a propositional formula. Hence we extend techniques from the area of belief revision based on distance between models to belief change in logic programs.
We first consider belief revision: for logic programs P and Q, the goal is to determine a program R that corresponds to the revision of P by Q, denoted P * Q. We investigate several operators, including (logic program) expansion and two revision operators based on the distance between the SE models of logic programs. It proves to be the case that expansion is an interesting operator in its own right, unlike in classical belief revision where it is relatively uninteresting. Expansion and revision are shown to satisfy a suite of interesting properties; in particular, our revision operators satisfy all or nearly all of the AGM postulates for revision.
We next consider approaches for merging a set of logic programs, P-1,...,P-n. Again, our formal techniques are based on notions of relative distance between the SE models of the logic programs. Two approaches are examined. The first informally selects for each program P-i those models of P-i that vary the least from models of the other programs. The second approach informally selects those models of a program P-0 that are closest to the models of programs P-1,...,P-n. In this case, P-0 can be thought of as a set of database integrity constraints. We examine these operators with regards to how they satisfy relevant postulate sets.
Last, we present encodings for computing the revision as well as the merging of logic programs within the same logic programming framework. This gives rise to a direct implementation of our approach in terms of off-the-shelf answer set solvers. These encodings also reflect the fact that our change operators do not increase the complexity of the base formalism.