### Refine

#### Keywords

- anomalous diffusion (12)
- stochastic processes (8)
- ageing (5)
- diffusion (4)
- living cells (4)
- Levy flights (3)
- adenoassociated virus (2)
- behavior (2)
- coefficients (2)
- cytoplasm (2)

#### Institute

We study the effects of ageing-the time delay between initiation of the physical process at t = 0 and start of observation at some time t(a) > 0-and spatial confinement on the properties of heterogeneous diffusion processes (HDPs) with deterministic power-law space-dependent diffusivities, D(x) = D-0 vertical bar x vertical bar(alpha). From analysis of the ensemble and time averaged mean squared displacements and the ergodicity breaking parameter quantifying the inherent degree of irreproducibility of individual realizations of the HDP we obtain striking similarities to ageing subdiffusive continuous time random walks with scale-free waiting time distributions. We also explore how both processes can be distinguished. For confined HDPs we study the long-time saturation of the ensemble and time averaged particle displacements as well as the magnitude of the inherent scatter of time averaged displacements and contrast the outcomes to the results known for other anomalous diffusion processes under confinement.

Aging scaled Brownian motion
(2015)

Scaled Brownian motion (SBM) is widely used to model anomalous diffusion of passive tracers in complex and biological systems. It is a highly nonstationary process governed by the Langevin equation for Brownian motion, however, with a power-law time dependence of the noise strength. Here we study the aging properties of SBM for both unconfined and confined motion. Specifically, we derive the ensemble and time averaged mean squared displacements and analyze their behavior in the regimes of weak, intermediate, and strong aging. A very rich behavior is revealed for confined aging SBM depending on different aging times and whether the process is sub- or superdiffusive. We demonstrate that the information on the aging factorizes with respect to the lag time and exhibits a functional form that is identical to the aging behavior of scale-free continuous time random walk processes. While SBM exhibits a disparity between ensemble and time averaged observables and is thus weakly nonergodic, strong aging is shown to effect a convergence of the ensemble and time averaged mean squared displacement. Finally, we derive the density of first passage times in the semi-infinite domain that features a crossover defined by the aging time.

We demonstrate the non-ergodicity of a simple Markovian stochastic process with space-dependent diffusion coefficient D(x). For power-law forms D(x) similar or equal to vertical bar x vertical bar(alpha), this process yields anomalous diffusion of the form < x(2)(t)> similar or equal to t(2/(2-alpha)). Interestingly, in both the sub- and superdiffusive regimes we observe weak ergodicity breaking: the scaling of the time-averaged mean-squared displacement <(delta(2)(Delta))over bar> remains linear in the lag time Delta and thus differs from the corresponding ensemble average < x(2)(t)>. We analyse the non-ergodic behaviour of this process in terms of the time-averaged mean- squared displacement (delta(2)) over bar and its random features, i.e. the statistical distribution of (delta(2)) over bar and the ergodicity breaking parameters. The heterogeneous diffusion model represents an alternative approach to non- ergodic, anomalous diffusion that might be particularly relevant for diffusion in heterogeneous media.

We consider the effective surface motion of a particle that intermittently unbinds from a planar surface and performs bulk excursions. Based on a random-walk approach, we derive the diffusion equations for surface and bulk diffusion including the surface-bulk coupling. From these exact dynamic equations, we analytically obtain the propagator of the effective surface motion. This approach allows us to deduce a superdiffusive, Cauchy-type behavior on the surface, together with exact cutoffs limiting the Cauchy form. Moreover, we study the long-time dynamics for the surface motion.

In various biological systems and small scale technological applications particles transiently bind to a cylindrical surface. Upon unbinding the particles diffuse in the vicinal bulk before rebinding to the surface. Such bulk-mediated excursions give rise to an effective surface translation, for which we here derive and discuss the dynamic equations, including additional surface diffusion. We discuss the time evolution of the number of surface-bound particles, the effective surface mean squared displacement, and the surface propagator. In particular, we observe sub- and superdiffusive regimes. A plateau of the surface mean-squared displacement reflects a stalling of the surface diffusion at longer times. Finally, the corresponding first passage problem for the cylindrical geometry is analysed.

Standard continuous time random walk (CTRW) models are renewal processes in the sense that at each jump a new, independent pair of jump length and waiting time are chosen. Globally, anomalous diffusion emerges through scale-free forms of the jump length and/or waiting time distributions by virtue of the generalized central limit theorem. Here we present a modified version of recently proposed correlated CTRW processes, where we incorporate a power-law correlated noise on the level of both jump length and waiting time dynamics. We obtain a very general stochastic model, that encompasses key features of several paradigmatic models of anomalous diffusion: discontinuous, scale-free displacements as in Levy flights, scale-free waiting times as in subdiffusive CTRWs, and the long-range temporal correlations of fractional Brownian motion (FBM). We derive the exact solutions for the single-time probability density functions and extract the scaling behaviours. Interestingly, we find that different combinations of the model parameters lead to indistinguishable shapes of the emerging probability density functions and identical scaling laws. Our model will be useful for describing recent experimental single particle tracking data that feature a combination of CTRW and FBM properties.

We consider anomalous stochastic processes based on the renewal continuous time random walk model with different forms for the probability density of waiting times between individual jumps. In the corresponding continuum limit we derive the generalized diffusion and Fokker-Planck-Smoluchowski equations with the corresponding memory kernels. We calculate the qth order moments in the unbiased and biased cases, and demonstrate that the generalized Einstein relation for the considered dynamics remains valid. The relaxation of modes in the case of an external harmonic potential and the convergence of the mean squared displacement to the thermal plateau are analyzed.

In this paper we study the dynamics of a particle in a ratchet potential subject to multiplicative alpha-stable Levy noise, alpha is an element of(0, 2), in the limit of a noise amplitude epsilon -> 0. We compare the dynamics for Ito and Marcus multiplicative noises and obtain the explicit asymptotics of the escape time in the wells and transition probabilities between the wells. A detailed analysis of the noise-induced current is performed for the Seebeck ratchet with a weak multiplicative noise for alpha is an element of(0, 2].

In this paper we propose an algorithm to distinguish between light- and heavy-tailed probability laws underlying random datasets. The idea of the algorithm, which is visual and easy to implement, is to check whether the underlying law belongs to the domain of attraction of the Gaussian or non-Gaussian stable distribution by examining its rate of convergence. The method allows to discriminate between stable and various non-stable distributions. The test allows to differentiate between distributions, which appear the same according to standard Kolmogorov-Smirnov test. In particular, it helps to distinguish between stable and Student's t probability laws as well as between the stable and tempered stable, the cases which are considered in the literature as very cumbersome. Finally, we illustrate the procedure on plasma data to identify cases with so-called L-H transition.

We study distributed-order time fractional diffusion equations characterized by multifractal memory kernels, in contrast to the simple power-law kernel of common time fractional diffusion equations. Based on the physical approach to anomalous diffusion provided by the seminal Scher-Montroll-Weiss continuous time random walk, we analyze both natural and modified-form distributed-order time fractional diffusion equations and compare the two approaches. The mean squared displacement is obtained and its limiting behavior analyzed. We derive the connection between the Wiener process, described by the conventional Langevin equation and the dynamics encoded by the distributed-order time fractional diffusion equation in terms of a generalized subordination of time. A detailed analysis of the multifractal properties of distributed-order diffusion equations is provided.

Fluctuation relations for anomalous dynamics generated by time-fractional Fokker-Planck equations
(2015)

Anomalous dynamics characterized by non-Gaussian probability distributions (PDFs) and/or temporal long-range correlations can cause subtle modifications of conventional fluctuation relations (FRs). As prototypes we study three variants of a generic time-fractional Fokker-Planck equation with constant force. Type A generates superdiffusion, type B subdiffusion and type C both super-and subdiffusion depending on parameter variation. Furthermore type C obeys a fluctuation-dissipation relation whereas A and B do not. We calculate analytically the position PDFs for all three cases and explore numerically their strongly non-Gaussian shapes. While for type C we obtain the conventional transient work FR, type A and type B both yield deviations by featuring a coefficient that depends on time and by a nonlinear dependence on the work. We discuss possible applications of these types of dynamics and FRs to experiments.

It is generally believed that random search processes based on scale-free, Levy stable jump length distributions (Levy flights) optimize the search for sparse targets. Here we show that this popular search advantage is less universal than commonly assumed. We study the efficiency of a minimalist search model based on Levy flights in the absence and presence of an external drift (underwater current, atmospheric wind, a preference of the walker owing to prior experience, or a general bias in an abstract search space) based on two different optimization criteria with respect to minimal search time and search reliability (cumulative arrival probability). Although Levy flights turn out to be efficient search processes when the target is far from the starting point, or when relative to the starting point the target is upstream, we show that for close targets and for downstream target positioning regular Brownian motion turns out to be the advantageous search strategy. Contrary to claims that Levy flights with a critical exponent alpha = 1 are optimal for the search of sparse targets in different settings, based on our optimization parameters the optimal a may range in the entire interval (1, 2) and especially include Brownian motion as the overall most efficient search strategy.

We study ultraslow diffusion processes with logarithmic mean squared displacement (MSD) < x(2)(t)> similar or equal to log(gamma)t. Comparison of annealed (renewal) continuous time random walks (CTRWs) with logarithmic waiting time distribution psi(tau) similar or equal to 1/(tau log(1+gamma)tau) and Sinai diffusion in quenched random landscapes reveals striking similarities, despite the great differences in their physical nature. In particular, they exhibit a weakly non-ergodic disparity of the time-averaged and ensemble-averaged MSDs. Remarkably, for the CTRW we observe that the fluctuations of time averages become universal, with an exponential suppression of mobile trajectories. We discuss the fundamental connection between the Golosov localization effect and non-ergodicity in the sense of the disparity between ensemble-averaged MSD and time-averaged MSD.

We study transient work fluctuation relations (FRs) for Gaussian stochastic systems generating anomalous diffusion. For this purpose we use a Langevin approach by employing two different types of additive noise: (i) internal noise where the fluctuation dissipation relation of the second kind (FDR II) holds, and (ii) external noise without FDR II. For internal noise we demonstrate that the existence of FDR II implies the existence of the fluctuation dissipation relation of the first kind (FDR I), which in turn leads to conventional (normal) forms of transient work FRs. For systems driven by external noise we obtain violations of normal FRs, which we call anomalous FRs. We derive them in the long-time limit and demonstrate the existence of logarithmic factors in FRs for intermediate times. We also outline possible experimental verifications.

From scaling arguments and numerical simulations, we investigate the properties of the generalized elastic model (GEM) that is used to describe various physical systems such as polymers, membranes, single-file systems, or rough interfaces. We compare analytical and numerical results for the subdiffusion exponent beta characterizing the growth of the mean squared displacement <(delta h)(2)> of the field h described by the GEM dynamic equation. We study the scaling properties of the qth order moments <vertical bar delta h vertical bar(q)> with time, finding that the interface fluctuations show no intermittent behavior. We also investigate the ergodic properties of the process h in terms of the ergodicity breaking parameter and the distribution of the time averaged mean squared displacement. Finally, we study numerically the driven GEM with a constant, localized perturbation and extract the characteristics of the average drift for a tagged probe.

We study the thermal Markovian diffusion of tracer particles in a 2D medium with spatially varying diffusivity D(r), mimicking recently measured, heterogeneous maps of the apparent diffusion coefficient in biological cells. For this heterogeneous diffusion process (HDP) we analyse the mean squared displacement (MSD) of the tracer particles, the time averaged MSD, the spatial probability density function, and the first passage time dynamics from the cell boundary to the nucleus. Moreover we examine the non-ergodic properties of this process which are important for the correct physical interpretation of time averages of observables obtained from single particle tracking experiments. From extensive computer simulations of the 2D stochastic Langevin equation we present an in-depth study of this HDP. In particular, we find that the MSDs along the radial and azimuthal directions in a circular domain obey anomalous and Brownian scaling, respectively. We demonstrate that the time averaged MSD stays linear as a function of the lag time and the system thus reveals a weak ergodicity breaking. Our results will enable one to rationalise the diffusive motion of larger tracer particles such as viruses or submicron beads in biological cells.

Brownian motion is ergodic in the Boltzmann-Khinchin sense that long time averages of physical observables such as the mean squared displacement provide the same information as the corresponding ensemble average, even at out-of-equilibrium conditions. This property is the fundamental prerequisite for single particle tracking and its analysis in simple liquids. We study analytically and by event-driven molecular dynamics simulations the dynamics of force-free cooling granular gases and reveal a violation of ergodicity in this Boltzmann-Khinchin sense as well as distinct ageing of the system. Such granular gases comprise materials such as dilute gases of stones, sand, various types of powders, or large molecules, and their mixtures are ubiquitous in Nature and technology, in particular in Space. We treat-depending on the physical-chemical properties of the inter-particle interaction upon their pair collisions-both a constant and a velocity-dependent (viscoelastic) restitution coefficient epsilon. Moreover we compare the granular gas dynamics with an effective single particle stochastic model based on an underdamped Langevin equation with time dependent diffusivity. We find that both models share the same behaviour of the ensemble mean squared displacement (MSD) and the velocity correlations in the limit of weak dissipation. Qualitatively, the reported non-ergodic behaviour is generic for granular gases with any realistic dependence of epsilon on the impact velocity of particles.