### Refine

#### Year of publication

#### Language

- English (66)

#### Is part of the Bibliography

- yes (66)

#### Keywords

- anomalous diffusion (21)
- diffusion (10)
- stochastic processes (8)
- Levy flights (6)
- ageing (5)
- living cells (4)
- financial time series (3)
- first-hitting time (3)
- first-passage time (3)
- geometric Brownian motion (3)

#### Institute

We address the generic problem of random search for a point-like target on a line. Using the measures of search reliability and efficiency to quantify the random search quality, we compare Brownian search with Levy search based on long-tailed jump length distributions. We then compare these results with a search process combined of two different long-tailed jump length distributions. Moreover, we study the case of multiple targets located by a Levy searcher.

For both Lévy flight and Lévy walk search processes we analyse the full distribution of first-passage and first-hitting (or first-arrival) times. These are, respectively, the times when the particle moves across a point at some given distance from its initial position for the first time, or when it lands at a given point for the first time. For Lévy motions with their propensity for long relocation events and thus the possibility to jump across a given point in space without actually hitting it ('leapovers'), these two definitions lead to significantly different results. We study the first-passage and first-hitting time distributions as functions of the Lévy stable index, highlighting the different behaviour for the cases when the first absolute moment of the jump length distribution is finite or infinite. In particular we examine the limits of short and long times. Our results will find their application in the mathematical modelling of random search processes as well as computer algorithms.

Levy walks are continuous time random walks with spatio-temporal coupling of jump lengths and waiting times, often used to model superdiffusive spreading processes such as animals searching for food, tracer motion in weakly chaotic systems, or even the dynamics in quantum systems such as cold atoms. In the simplest version Levy walks move with a finite speed. Here, we present an extension of the Levy walk scenario for the case when external force fields influence the motion. The resulting motion is a combination of the response to the deterministic force acting on the particle, changing its velocity according to the principle of total energy conservation, and random velocity reversals governed by the distribution of waiting times. For the fact that the motion stays conservative, that is, on a constant energy surface, our scenario is fundamentally different from thermal motion in the same external potentials. In particular, we present results for the velocity and position distributions for single well potentials of different steepness. The observed dynamics with its continuous velocity changes enriches the theory of Levy walk processes and will be of use in a variety of systems, for which the particles are externally confined.

We study generalized diffusion-wave equation in which the second order time derivative is replaced by an integro-differential operator. It yields time fractional and distributed order time fractional diffusion-wave equations as particular cases. We consider different memory kernels of the integro-differential operator, derive corresponding fundamental solutions, specify the conditions of their non-negativity and calculate the mean squared displacement for all cases. In particular, we introduce and study generalized diffusion-wave equations with a regularized Prabhakar derivative of single and distributed orders. The equations considered can be used for modeling the broad spectrum of anomalous diffusion processes and various transitions between different diffusion regimes.

We discuss generalized integro-differential diffusion equations whose integral kernels are not of a simple power law form, and thus these equations themselves do not belong to the family of fractional diffusion equations exhibiting a monoscaling behavior. They instead generate a broad class of anomalous nonscaling patterns, which correspond either to crossovers between different power laws, or to a non-power-law behavior as exemplified by the logarithmic growth of the width of the distribution. We consider normal and modified forms of these generalized diffusion equations and provide a brief discussion of three generic types of integral kernels for each form, namely, distributed order, truncated power law and truncated distributed order kernels. For each of the cases considered we prove the non-negativity of the solution of the corresponding generalized diffusion equation and calculate the mean squared displacement. (C) 2017 Elsevier Ltd. All rights reserved.

A considerable number of systems have recently been reported in which
Brownian yet non-Gaussian dynamics was observed. These are processes characterised by a linear growth in time of the mean squared displacement, yet the probability density function of the particle displacement is distinctly non-Gaussian, and often of exponential(Laplace) shape. This apparently ubiquitous behaviour observed in very different physical systems has been interpreted as resulting from diffusion in inhomogeneous environments and mathematically represented through a variable, stochastic diffusion coefficient. Indeed different models describing a fluctuating diffusivity have been studied. Here we present a new view of the stochastic basis describing time dependent random diffusivities within a broad spectrum of distributions. Concretely, our study is based on the very generic class of the generalised Gamma distribution. Two models for the particle spreading in such random diffusivity settings are studied. The first belongs to the class of generalised grey Brownian motion while the second follows from the idea of diffusing diffusivities. The two processes exhibit significant characteristics which reproduce experimental results from different biological and physical systems. We promote these two physical models for the description of stochastic particle motion in complex environments.

Brownian yet non-Gaussian dynamics was observed. These are processes characterised by a linear growth in time of the mean squared displacement, yet the probability density function of the particle displacement is distinctly non-Gaussian, and often of exponential(Laplace) shape. This apparently ubiquitous behaviour observed in very different physical systems has been interpreted as resulting from diffusion in inhomogeneous environments and mathematically represented through a variable, stochastic diffusion coefficient. Indeed different models describing a fluctuating diffusivity have been studied. Here we present a new view of the stochastic basis describing time dependent random diffusivities within a broad spectrum of distributions. Concretely, our study is based on the very generic class of the generalised Gamma distribution. Two models for the particle spreading in such random diffusivity settings are studied. The first belongs to the class of generalised grey Brownian motion while the second follows from the idea of diffusing diffusivities. The two processes exhibit significant characteristics which reproduce experimental results from different biological and physical systems. We promote these two physical models for the description of stochastic particle motion in complex environments.

Complex systems are known to display anomalous diffusion, whose signature is a space/time scaling x similar to t(delta) with delta not equal 1/2 in the probability density function (PDF). Anomalous diffusion can emerge jointly with both Gaussian, e.g. fractional Brownian motion, and power-law decaying distributions, e.g. Levy Flights or Levy Walks (LWs). Levy flights get anomalous scaling, but, being jumps of any size allowed even at short times, have infinite position variance, infinite energy and discontinuous paths. LWs, which are based on random trapping events, overcome these limitations: they resemble a Levy-type power-law distribution that is truncated in the large displacement range and have finite moments, finite energy and, even with discontinuous velocity, they are continuous. However, LWs do not take into account the role of strong heterogeneity in many complex systems, such as biological transport in the crowded cell environment. In this work we propose and discuss a model describing a heterogeneous ensemble of Brownian particles (HEBP). Velocity of each single particle obeys a standard underdamped Langevin equation for the velocity, with linear friction term and additive Gaussian noise. Each particle is characterized by its own relaxation time and velocity diffusivity. We show that, for proper distributions of relaxation time and velocity diffusivity, the HEBP resembles some LW statistical features, in particular power-law decaying PDF, long-range correlations and anomalous diffusion, at the same time keeping finite position moments and finite energy. The main differences between the HEBP model and two different LWs are investigated, finding that, even when both velocity and position PDFs are similar, they differ in four main aspects: (i) LWs are biscaling, while HEBP is monoscaling; (ii) a transition from anomalous (delta = 1/2) to normal (delta = 1/2) diffusion in the long-time regime is seen in the HEBP and not in LWs; (iii) the power-law index of the position PDF and the space/time diffusion scaling are independent in the HEBP, while they both depend on the scaling of the interevent time PDF in LWs; (iv) at variance with LWs, our HEBP model obeys a fluctuation-dissipation theorem.

We investigate an intermittent stochastic process in which diffusive motion with a time-dependent diffusion coefficient, D(t)∼tα−1, α>0 (scaled Brownian motion), is stochastically reset to its initial position and starts anew. The resetting follows a renewal process with either an exponential or a power-law distribution of the waiting times between successive renewals. The resetting events, however, do not affect the time dependence of the diffusion coefficient, so that the whole process appears to be a nonrenewal one. We discuss the mean squared displacement of a particle and the probability density function of its positions in this process. We show that scaled Brownian motion with resetting demonstrates rich behavior whose properties essentially depend on the interplay of the parameters of the resetting process and the particle's displacement infree motion. The motion of particles can remain almost unaffected by resetting but can also get slowed down or even be completely suppressed. Especially interesting are the nonstationary situations in which the mean squared displacement stagnates but the distribution of positions does not tend to any steady state. This behavior is compared to the situation [discussed in the companion paper; A. S. Bodrova et al., Phys. Rev. E 100, 012120 (2019)] in which the memory of the value of the diffusion coefficient at a resetting time is erased, so that the whole process is a fully renewal one. We show that the properties of the probability densities in such processes (erasing or retaining the memory on the diffusion coefficient) are vastly different.

We investigate an intermittent stochastic process in which the diffusive motion with time-dependent diffusion coefficient D(t)∼tα−1 with α>0 (scaled Brownian motion) is stochastically reset to its initial position, and starts anew. In the present work we discuss the situation in which the memory on the value of the diffusion coefficient at a resetting time is erased, so that the whole process is a fully renewal one. The situation when the resetting of the coordinate does not affect the diffusion coefficient's time dependence is considered in the other work of this series [A. S. Bodrova et al., Phys. Rev. E 100, 012119 (2019)]. We show that the properties of the probability densities in such processes (erasing or retaining the memory on the diffusion coefficient) are vastly different. In addition we discuss the first-passage properties of the scaled Brownian motion with renewal resetting and consider the dependence of the efficiency of search on the parameters of the process.