• Deutsch

University Logo

  • Home
  • Search
  • Browse
  • Submit
  • Sitemap
Schließen

Refine

Has Fulltext

  • no (32)

Author

  • Benbow, W. (32)
  • Byrum, K. (32)
  • Finley, J. P. (32)
  • Fortson, L. (32)
  • Gyuk, G. (32)
  • Kaaret, P. (32)
  • Ong, R. A. (32)
  • Wakely, S. P. (32)
  • Williams, D. A. (32)
  • Bugaev, V. (31)
+ more

Year of publication

  • 2016 (6)
  • 2015 (2)
  • 2014 (6)
  • 2013 (5)
  • 2012 (7)
  • 2011 (6)

Document Type

  • Article (31)
  • Preprint (1)

Language

  • English (32)

Is part of the Bibliography

  • yes (32)

Keywords

  • gamma rays: general (9)
  • gamma rays: galaxies (8)
  • binaries: general (5)
  • BL Lacertae objects: general (4)
  • acceleration of particles (4)
  • galaxies: active (4)
  • astroparticle physics (3)
  • radiation mechanisms: non-thermal (3)
  • Galaxy: center (2)
  • X-rays: binaries (2)
+ more

Institute

  • Institut für Physik und Astronomie (32)

32 search hits

  • 1 to 10
  • BibTeX
  • CSV
  • RIS
  • XML
  • 10
  • 20
  • 50
  • 100

Sort by

  • Year
  • Year
  • Title
  • Title
  • Author
  • Author
Design concepts for the Cherenkov Telescope Array CTA an advanced facility for ground-based high-energy gamma-ray astronomy (2011)
Actis, M. ; Agnetta, G. ; Aharonian, Felix ; Akhperjanian, A. G. ; Aleksic, J. ; Aliu, E. ; Allan, D. ; Allekotte, I. ; Antico, F. ; Antonelli, L. A. ; Antoranz, P. ; Aravantinos, A. ; Arlen, T. ; Arnaldi, H. ; Artmann, S. ; Asano, K. ; Asorey, H. G. ; Baehr, J. ; Bais, A. ; Baixeras, C. ; Bajtlik, S. ; Balis, D. ; Bamba, A. ; Barbier, C. ; Barcelo, M. ; Barnacka, Anna ; Barnstedt, Jürgen ; de Almeida, U. Barres ; Barrio, J. A. ; Basso, S. ; Bastieri, D. ; Bauer, C. ; Becerra Gonzalez, J. ; Becherini, Yvonne ; Bechtol, K. C. ; Becker, J. ; Beckmann, Volker ; Bednarek, W. ; Behera, B. ; Beilicke, M. ; Belluso, M. ; Benallou, M. ; Benbow, W. ; Berdugo, J. ; Berger, K. ; Bernardino, T. ; Bernlöhr, K. ; Biland, A. ; Billotta, S. ; Bird, T. ; Birsin, E. ; Bissaldi, E. ; Blake, S. ; Blanch Bigas, O. ; Bobkov, A. A. ; Bogacz, L. ; Bogdan, M. ; Boisson, Catherine ; Boix Gargallo, J. ; Bolmont, J. ; Bonanno, G. ; Bonardi, A. ; Bonev, T. ; Borkowski, Janett ; Botner, O. ; Bottani, A. ; Bourgeat, M. ; Boutonnet, C. ; Bouvier, A. ; Brau-Nogue, S. ; Braun, I. ; Bretz, T. ; Briggs, M. S. ; Brun, Pierre ; Brunetti, L. ; Buckley, H. ; Bugaev, V. ; Buehler, R. ; Bulik, Tomasz ; Busetto, G. ; Buson, S. ; Byrum, K. ; Cailles, M. ; Cameron, R. A. ; Canestrari, R. ; Cantu, S. ; Carmona, E. ; Carosi, A. ; Carr, John ; Carton, P. H. ; Casiraghi, M. ; Castarede, H. ; Catalano, O. ; Cavazzani, S. ; Cazaux, S. ; Cerruti, B. ; Cerruti, M. ; Chadwick, M. ; Chiang, J. ; Chikawa, M. ; Cieslar, M. ; Ciesielska, M. ; Cillis, A. N. ; Clerc, C. ; Colin, P. ; Colome, J. ; Compin, M. ; Conconi, P. ; Connaughton, V. ; Conrad, Jan ; Contreras, J. L. ; Coppi, P. ; Corlier, M. ; Corona, P. ; Corpace, O. ; Corti, D. ; Cortina, J. ; Costantini, H. ; Cotter, G. ; Courty, B. ; Couturier, S. ; Covino, S. ; Croston, J. ; Cusumano, G. ; Daniel, M. K. ; Dazzi, F. ; Deangelis, A. ; de Cea del Pozo, E. ; Dal Pino, E. M. de Gouveia ; de Jager, O. ; de la Calle Perez, I. ; De La Vega, G. ; De Lotto, B. ; de Naurois, M. ; Wilhelmi, E. de Ona ; de Souza, V. ; Decerprit, B. ; Deil, C. ; Delagnes, E. ; Deleglise, G. ; Delgado, C. ; Dettlaff, T. ; Di Paolo, A. ; Di Pierro, F. ; Diaz, C. ; Dick, J. ; Dickinson, H. ; Digel, S. W. ; Dimitrov, D. ; Disset, G. ; Djannati-Ataï, A. ; Doert, M. ; Domainko, W. ; Dorner, D. ; Doro, M. ; Dournaux, J. -L. ; Dravins, D. ; Drury, L. ; Dubois, F. ; Dubois, R. ; Dubus, G. ; Dufour, C. ; Durand, D. ; Dyks, J. ; Dyrda, M. ; Edy, E. ; Egberts, K. ; Eleftheriadis, C. ; Elles, S. ; Emmanoulopoulos, D. ; Enomoto, R. ; Ernenwein, J. -P. ; Errando, M. ; Etchegoyen, A. ; Falcone, A. D. ; Farakos, K. ; Farnier, C. ; Federici, S. ; Feinstein, F. ; Ferenc, D. ; Fillin-Martino, E. ; Fink, D. ; Finley, C. ; Finley, J. P. ; Firpo, R. ; Florin, D. ; Foehr, C. ; Fokitis, E. ; Font, Ll. ; Fontaine, G. ; Fontana, A. ; Foerster, A. ; Fortson, L. ; Fouque, N. ; Fransson, C. ; Fraser, G. W. ; Fresnillo, L. ; Fruck, C. ; Fujita, Y. ; Fukazawa, Y. ; Funk, S. ; Gaebele, W. ; Gabici, S. ; Gadola, A. ; Galante, N. ; Gallant, Y. ; Garcia, B. ; Garcia Lopez, R. J. ; Garrido, D. ; Garrido, L. ; Gascon, D. ; Gasq, C. ; Gaug, M. ; Gaweda, J. ; Geffroy, N. ; Ghag, C. ; Ghedina, A. ; Ghigo, M. ; Gianakaki, E. ; Giarrusso, S. ; Giavitto, G. ; Giebels, B. ; Giro, E. ; Giubilato, P. ; Glanzman, T. ; Glicenstein, J. -F. ; Gochna, M. ; Golev, V. ; Gomez Berisso, M. ; Gonzalez, A. ; Gonzalez, F. ; Granena, F. ; Graciani, R. ; Granot, J. ; Gredig, R. ; Green, A. ; Greenshaw, T. ; Grimm, O. ; Grube, J. ; Grudzinska, M. ; Grygorczuk, J. ; Guarino, V. ; Guglielmi, L. ; Guilloux, F. ; Gunji, S. ; Gyuk, G. ; Hadasch, D. ; Haefner, D. ; Hagiwara, R. ; Hahn, J. ; Hallgren, A. ; Hara, S. ; Hardcastle, M. J. ; Hassan, T. ; Haubold, T. ; Hauser, M. ; Hayashida, M. ; Heller, R. ; Henri, G. ; Hermann, G. ; Herrero, A. ; Hinton, J. A. ; Hoffmann, D. ; Hofmann, W. ; Hofverberg, P. ; Horns, D. ; Hrupec, D. ; Huan, H. ; Huber, B. ; Huet, J. -M. ; Hughes, G. ; Hultquist, K. ; Humensky, T. B. ; Huppert, J. -F. ; Ibarra, A. ; Illa, J. M. ; Ingjald, J. ; Inoue, S. ; Inoue, Y. ; Ioka, K. ; Jablonski, C. ; Jacholkowska, A. ; Janiak, M. ; Jean, P. ; Jensen, H. ; Jogler, T. ; Jung, I. ; Kaaret, P. ; Kabuki, S. ; Kakuwa, J. ; Kalkuhl, C. ; Kankanyan, R. ; Kapala, M. ; Karastergiou, A. ; Karczewski, M. ; Karkar, S. ; Karlsson, N. ; Kasperek, J. ; Katagiri, H. ; Katarzynski, K. ; Kawanaka, N. ; Kedziora, B. ; Kendziorra, E. ; Khelifi, B. ; Kieda, D. ; Kifune, T. ; Kihm, T. ; Klepser, S. ; Kluzniak, W. ; Knapp, J. ; Knappy, A. R. ; Kneiske, T. ; Knoedlseder, J. ; Koeck, F. ; Kodani, K. ; Kohri, K. ; Kokkotas, K. ; Komin, N. ; Konopelko, A. ; Kosack, K. ; Kossakowski, R. ; Kostka, P. ; Kotula, J. ; Kowal, G. ; Koziol, J. ; Kraehenbuehl, T. ; Krause, J. ; Krawczynski, H. ; Krennrich, F. ; Kretzschmann, A. ; Kubo, H. ; Kudryavtsev, V. A. ; Kushida, J. ; La Barbera, N. ; La Parola, V. ; La Rosa, G. ; Lopez, A. ; Lamanna, G. ; Laporte, P. ; Lavalley, C. ; Le Flour, T. ; Le Padellec, A. ; Lenain, J. -P. ; Lessio, L. ; Lieunard, B. ; Lindfors, E. ; Liolios, A. ; Lohse, T. ; Lombardi, S. ; Lopatin, A. ; Lorenz, E. ; Lubinski, P. ; Luz, O. ; Lyard, E. ; Maccarone, M. C. ; Maccarone, T. ; Maier, G. ; Majumdar, P. ; Maltezos, S. ; Malkiewicz, P. ; Mana, C. ; Manalaysay, A. ; Maneva, G. ; Mangano, A. ; Manigot, P. ; Marin, J. ; Mariotti, M. ; Markoff, S. ; Martinez, G. ; Martinez, M. ; Mastichiadis, A. ; Matsumoto, H. ; Mattiazzo, S. ; Mazin, D. ; McComb, T. J. L. ; McCubbin, N. ; McHardy, I. ; Medina, C. ; Melkumyan, D. ; Mendes, A. ; Mertsch, P. ; Meucci, M. ; Michalowski, J. ; Micolon, P. ; Mineo, T. ; Mirabal, N. ; Mirabel, F. ; Miranda, J. M. ; Mirzoyan, R. ; Mizuno, T. ; Moal, B. ; Moderski, R. ; Molinari, E. ; Monteiro, I. ; Moralejo, A. ; Morello, C. ; Mori, K. ; Motta, G. ; Mottez, F. ; Moulin, E. ; Mukherjee, R. ; Munar, P. ; Muraishi, H. ; Murase, K. ; Murphy, A. Stj. ; Nagataki, S. ; Naito, T. ; Nakamori, T. ; Nakayama, K. ; Naumann, C. L. ; Naumann, D. ; Nayman, P. ; Nedbal, D. ; Niedzwiecki, A. ; Niemiec, J. ; Nikolaidis, A. ; Nishijima, K. ; Nolan, S. J. ; Nowak, N. ; O'Brien, P. T. ; Ochoa, I. ; Ohira, Y. ; Ohishi, M. ; Ohka, H. ; Okumura, A. ; Olivetto, C. ; Ong, R. A. ; Orito, R. ; Orr, M. ; Osborne, J. P. ; Ostrowski, M. ; Otero, L. ; Otte, A. N. ; Ovcharov, E. ; Oya, I. ; Ozieblo, A. ; Paiano, S. ; Pallota, J. ; Panazol, J. L. ; Paneque, D. ; Panter, M. ; Paoletti, R. ; Papyan, G. ; Paredes, J. M. ; Pareschi, G. ; Parsons, R. D. ; Arribas, M. Paz ; Pedaletti, G. ; Pepato, A. ; Persic, M. ; Petrucci, P. O. ; Peyaud, B. ; Piechocki, W. ; Pita, S. ; Pivato, G. ; Platos, L. ; Platzer, R. ; Pogosyan, L. ; Pohl, Martin ; Pojmanski, G. ; Ponz, J. D. ; Potter, W. ; Prandini, E. ; Preece, R. ; Prokoph, H. ; Puehlhofer, G. ; Punch, M. ; Quel, E. ; Quirrenbach, A. ; Rajda, P. ; Rando, R. ; Rataj, M. ; Raue, M. ; Reimann, C. ; Reimann, O. ; Reimer, A. ; Reimer, O. ; Renaud, M. ; Renner, S. ; Reymond, J. -M. ; Rhode, W. ; Ribo, M. ; Ribordy, M. ; Rico, J. ; Rieger, F. ; Ringegni, P. ; Ripken, J. ; Ristori, P. ; Rivoire, S. ; Rob, L. ; Rodriguez, S. ; Roeser, U. ; Romano, P. ; Romero, G. E. ; Rosier-Lees, S. ; Rovero, A. C. ; Roy, F. ; Royer, S. ; Rudak, B. ; Rulten, C. B. ; Ruppel, J. ; Russo, F. ; Ryde, F. ; Sacco, B. ; Saggion, A. ; Sahakian, V. ; Saito, K. ; Saito, T. ; Sakaki, N. ; Salazar, E. ; Salini, A. ; Sanchez, F. ; Sanchez Conde, M. A. ; Santangelo, A. ; Santos, E. M. ; Sanuy, A. ; Sapozhnikov, L. ; Sarkar, S. ; Scalzotto, V. ; Scapin, V. ; Scarcioffolo, M. ; Schanz, T. ; Schlenstedt, S. ; Schlickeiser, R. ; Schmidt, T. ; Schmoll, J. ; Schroedter, M. ; Schultz, C. ; Schultze, J. ; Schulz, A. ; Schwanke, U. ; Schwarzburg, S. ; Schweizer, T. ; Seiradakis, J. ; Selmane, S. ; Seweryn, K. ; Shayduk, M. ; Shellard, R. C. ; Shibata, T. ; Sikora, M. ; Silk, J. ; Sillanpaa, A. ; Sitarek, J. ; Skole, C. ; Smith, N. ; Sobczynska, D. ; Sofo Haro, M. ; Sol, H. ; Spanier, F. ; Spiga, D. ; Spyrou, S. ; Stamatescu, V. ; Stamerra, A. ; Starling, R. L. C. ; Stawarz, L. ; Steenkamp, R. ; Stegmann, C. ; Steiner, S. ; Stergioulas, N. ; Sternberger, R. ; Stinzing, F. ; Stodulski, M. ; Straumann, U. ; Suarez, A. ; Suchenek, M. ; Sugawara, R. ; Sulanke, K. H. ; Sun, S. ; Supanitsky, A. D. ; Sutcliffe, P. ; Szanecki, M. ; Szepieniec, T. ; Szostek, A. ; Szymkowiak, A. ; Tagliaferri, G. ; Tajima, H. ; Takahashi, H. ; Takahashi, K. ; Takalo, L. ; Takami, H. ; Talbot, R. G. ; Tam, P. H. ; Tanaka, M. ; Tanimori, T. ; Tavani, M. ; Tavernet, J. -P. ; Tchernin, C. ; Tejedor, L. A. ; Telezhinsky, I. ; Temnikov, P. ; Tenzer, C. ; Terada, Y. ; Terrier, R. ; Teshima, M. ; Testa, V. ; Tibaldo, L. ; Tibolla, O. ; Tluczykont, M. ; Peixoto, C. J. Todero ; Tokanai, F. ; Tokarz, M. ; Toma, K. ; Torres, D. F. ; Tosti, G. ; Totani, T. ; Toussenel, F. ; Vallania, P. ; Vallejo, G. ; van der Walt, J. ; van Eldik, C. ; Vandenbroucke, J. ; Vankov, H. ; Vasileiadis, G. ; Vassiliev, V. V. ; Vegas, I. ; Venter, L. ; Vercellone, S. ; Veyssiere, C. ; Vialle, J. P. ; Videla, M. ; Vincent, P. ; Vink, J. ; Vlahakis, N. ; Vlahos, L. ; Vogler, P. ; Vollhardt, A. ; Volpe, F. ; Von Gunten, H. P. ; Vorobiov, S. ; Wagner, S. ; Wagner, R. M. ; Wagner, B. ; Wakely, S. P. ; Walter, P. ; Walter, R. ; Warwick, R. ; Wawer, P. ; Wawrzaszek, R. ; Webb, N. ; Wegner, P. ; Weinstein, A. ; Weitzel, Q. ; Welsing, R. ; Wetteskind, H. ; White, R. ; Wierzcholska, A. ; Wilkinson, M. I. ; Williams, D. A. ; Winde, M. ; Wischnewski, R. ; Wisniewski, L. ; Wolczko, A. ; Wood, M. ; Xiong, Q. ; Yamamoto, T. ; Yamaoka, K. ; Yamazaki, R. ; Yanagita, S. ; Yoffo, B. ; Yonetani, M. ; Yoshida, A. ; Yoshida, T. ; Yoshikoshi, T. ; Zabalza, V. ; Zagdanski, A. ; Zajczyk, A. ; Zdziarski, A. ; Zech, A. ; Zietara, K. ; Ziolkowski, P. ; Zitelli, V. ; Zychowski, P.
Ground-based gamma-ray astronomy has had a major breakthrough with the impressive results obtained using systems of imaging atmospheric Cherenkov telescopes. Ground-based gamma-ray astronomy has a huge potential in astrophysics, particle physics and cosmology. CTA is an international initiative to build the next generation instrument, with a factor of 5-10 improvement in sensitivity in the 100 GeV-10 TeV range and the extension to energies well below 100 GeV and above 100 TeV. CTA will consist of two arrays (one in the north, one in the south) for full sky coverage and will be operated as open observatory. The design of CTA is based on currently available technology. This document reports on the status and presents the major design concepts of CTA.
Veritas observations of gamma-ray bursts detected by swift (2011)
Acciari, V. A. ; Aliu, E. ; Arlen, T. ; Aune, T. ; Beilicke, M. ; Benbow, W. ; Bradbury, S. M. ; Buckley, J. H. ; Bugaev, V. ; Byrum, K. ; Cannon, A. ; Cesarini, A. ; Christiansen, J. L. ; Ciupik, L. ; Collins-Hughes, E. ; Connolly, M. P. ; Cui, W. ; Duke, C. ; Errando, M. ; Falcone, A. ; Finley, J. P. ; Finnegan, G. ; Fortson, L. ; Furniss, A. ; Galante, N. ; Gall, D. ; Godambe, S. ; Griffin, S. ; Grube, J. ; Guenette, R. ; Gyuk, G. ; Hanna, D. ; Holder, J. ; Hughes, G. ; Hui, C. M. ; Humensky, T. B. ; Jackson, D. J. ; Kaaret, P. ; Karlsson, N. ; Kertzman, M. ; Kieda, D. ; Krawczynski, H. ; Krennrich, F. ; Lang, M. J. ; Madhavan, A. S. ; Maier, G. ; McArthur, S. ; McCann, A. ; Moriarty, P. ; Newbold, M. D. ; Ong, R. A. ; Orr, M. ; Otte, A. N. ; Park, N. ; Perkins, J. S. ; Pohl, Martin ; Prokoph, H. ; Quinn, J. ; Ragan, K. ; Reyes, L. C. ; Reynolds, P. T. ; Roache, E. ; Rose, H. J. ; Ruppel, J. ; Saxon, D. B. ; Schroedter, M. ; Sembroski, G. H. ; Sentuerk, G. D. ; Smith, A. W. ; Staszak, D. ; Swordy, S. P. ; Tesic, G. ; Theiling, M. ; Thibadeau, S. ; Tsurusaki, K. ; Varlotta, A. ; Vassiliev, V. V. ; Vincent, S. ; Vivier, M. ; Wakely, S. P. ; Ward, J. E. ; Weekes, T. C. ; Weinstein, A. ; Weisgarber, T. ; Williams, D. A. ; Wood, M.
We present the results of 16 Swift-triggered Gamma-ray burst (GRB) follow-up observations taken with the Very Energetic Radiation Imaging Telescope Array System (VERITAS) telescope array from 2007 January to 2009 June. The median energy threshold and response time of these observations were 260 GeV and 320 s, respectively. Observations had an average duration of 90 minutes. Each burst is analyzed independently in two modes: over the whole duration of the observations and again over a shorter timescale determined by the maximum VERITAS sensitivity to a burst with a t(-1.5) time profile. This temporal model is characteristic of GRB afterglows with high-energy, long-lived emission that have been detected by the Large Area Telescope on board the Fermi satellite. No significant very high energy (VHE) gamma-ray emission was detected and upper limits above the VERITAS threshold energy are calculated. The VERITAS upper limits are corrected for gamma-ray extinction by the extragalactic background light and interpreted in the context of the keV emission detected by Swift. For some bursts the VHE emission must have less power than the keV emission, placing constraints on inverse Compton models of VHE emission.
Detection of pulsed Gamma Rays Above 100 GeV from the Crab Pulsar (2011)
Aliu, E. ; Arlen, T. ; Aune, T. ; Beilicke, M. ; Benbow, W. ; Bouvier, A. ; Bradbury, S. M. ; Buckley, J. H. ; Bugaev, V. ; Byrum, K. ; Cannon, A. ; Cesarini, A. ; Christiansen, J. L. ; Ciupik, L. ; Collins-Hughes, E. ; Connolly, M. P. ; Cui, W. ; Dickherber, R. ; Duke, C. ; Errando, M. ; Falcone, A. ; Finley, J. P. ; Finnegan, G. ; Fortson, L. ; Furniss, A. ; Galante, N. ; Gall, D. ; Gibbs, K. ; Gillanders, G. H. ; Godambe, S. ; Griffin, S. ; Grube, J. ; Guenette, R. ; Gyuk, G. ; Hanna, D. ; Holder, J. ; Huan, H. ; Hughes, G. ; Hui, C. M. ; Humensky, T. B. ; Imran, A. ; Kaaret, P. ; Karlsson, N. ; Kertzman, M. ; Kieda, D. ; Krawczynski, H. ; Krennrich, F. ; Lang, M. J. ; Lyutikov, M. ; Madhavan, A. S. ; Maier, G. ; Majumdar, P. ; McArthur, S. ; McCann, A. ; McCutcheon, M. ; Moriarty, P. ; Mukherjee, R. ; Nunez, P. ; Ong, R. A. ; Orr, M. ; Otte, A. N. ; Park, N. ; Perkins, J. S. ; Pizlo, F. ; Pohl, Martin ; Prokoph, H. ; Quinn, J. ; Ragan, K. ; Reyes, L. C. ; Reynolds, P. T. ; Roache, E. ; Rose, H. J. ; Ruppel, J. ; Saxon, D. B. ; Schroedter, M. ; Sembroski, G. H. ; Sentuerk, G. D. ; Smith, A. W. ; Staszak, D. ; Tesic, G. ; Theiling, M. ; Thibadeau, S. ; Tsurusaki, K. ; Tyler, J. ; Varlotta, A. ; Vassiliev, V. V. ; Vincent, S. ; Vivier, M. ; Wakely, S. P. ; Ward, J. E. ; Weekes, T. C. ; Weinstein, A. ; Weisgarber, T. ; Williams, D. A. ; Zitzer, B.
We report the detection of pulsed gamma rays from the Crab pulsar at energies above 100 giga-electron volts (GeV) with the Very Energetic Radiation Imaging Telescope Array System (VERITAS) array of atmospheric Cherenkov telescopes. The detection cannot be explained on the basis of current pulsar models. The photon spectrum of pulsed emission between 100 mega-electron volts and 400 GeV is described by a broken power law that is statistically preferred over a power law with an exponential cutoff. It is unlikely that the observation can be explained by invoking curvature radiation as the origin of the observed gamma rays above 100 GeV. Our findings require that these gamma rays be produced more than 10 stellar radii from the neutron star.
VERITAS OBSERVATIONS OF THE TeV BINARY LS I+61 degrees 303 DURING 2008-2010 (2011)
Acciari, V. A. ; Aliu, E. ; Arlen, T. ; Aune, T. ; Beilicke, M. ; Benbow, W. ; Bradbury, S. M. ; Buckley, J. H. ; Bugaev, V. ; Byrum, K. ; Cannon, A. ; Cesarini, A. ; Ciupik, L. ; Collins-Hughes, E. ; Connolly, M. P. ; Cui, W. ; Dickherber, R. ; Duke, C. ; Errando, M. ; Falcone, A. ; Finley, J. P. ; Finnegan, G. ; Fortson, L. ; Furniss, A. ; Galante, N. ; Gall, D. ; Gillanders, G. H. ; Godambe, S. ; Griffin, S. ; Grube, J. ; Guenette, R. ; Gyuk, G. ; Hanna, D. ; Holder, J. ; Hughes, G. ; Hui, C. M. ; Humensky, T. B. ; Kaaret, P. ; Karlsson, N. ; Kertzman, M. ; Kieda, D. ; Krawczynski, H. ; Krennrich, F. ; Lang, M. J. ; LeBohec, S. ; Maier, G. ; Majumdar, P. ; McArthur, S. ; McCann, A. ; Moriarty, P. ; Mukherjee, R. ; Ong, R. A. ; Orr, M. ; Otte, A. N. ; Park, N. ; Perkins, J. S. ; Pohl, Martin ; Prokoph, H. ; Quinn, J. ; Ragan, K. ; Reyes, L. C. ; Reynolds, P. T. ; Roache, E. ; Rose, H. J. ; Ruppel, J. ; Saxon, D. B. ; Schroedter, M. ; Sembroski, G. H. ; Senturk, G. D. ; Smith, A. W. ; Staszak, D. ; Tesic, G. ; Theiling, M. ; Thibadeau, S. ; Tsurusaki, K. ; Varlotta, A. ; Vassiliev, V. V. ; Vincent, S. ; Vivier, M. ; Wakely, S. P. ; Ward, J. E. ; Weekes, T. C. ; Weinstein, A. ; Weisgarber, T. ; Williams, D. A. ; Zitzer, B.
We present the results of observations of the TeV binary LS I + 61 degrees 303 with the VERITAS telescope array between 2008 and 2010, at energies above 300 GeV. In the past, both ground-based gamma-ray telescopes VERITAS and MAGIC have reported detections of TeV emission near the apastron phases of the binary orbit. The observations presented here show no strong evidence for TeV emission during these orbital phases; however, during observations taken in late 2010, significant emission was detected from the source close to the phase of superior conjunction (much closer to periastron passage) at a 5.6 standard deviation (5.6 sigma) post-trials significance. In total, between 2008 October and 2010 December a total exposure of 64.5 hr was accumulated with VERITAS on LS I + 61 degrees 303, resulting in an excess at the 3.3 sigma significance level for constant emission over the entire integrated data set. The flux upper limits derived for emission during the previously reliably active TeV phases (i.e., close to apastron) are less than 5% of the Crab Nebula flux in the same energy range. This result stands in apparent contrast to previous observations by both MAGIC and VERITAS which detected the source during these phases at 10% of the Crab Nebula flux. During the two year span of observations, a large amount of X-ray data were also accrued on LS I + 61 degrees 303 by the Swift X-ray Telescope and the Rossi X-ray Timing Explorer Proportional Counter Array. We find no evidence for a correlation between emission in the X-ray and TeV regimes during 20 directly overlapping observations. We also comment on data obtained contemporaneously by the Fermi Large Area Telescope.
Gamma-ray observations of the Be/Pulsar binary 1A 0535+262 during a Giant X-Ray outburst (2011)
Acciari, V. A. ; Aliu, E. ; Araya, M. ; Arlen, T. ; Aune, T. ; Beilicke, M. ; Benbow, W. ; Bradbury, S. M. ; Buckley, J. H. ; Bugaev, V. ; Byrum, K. ; Cannon, A. ; Cesarini, A. ; Ciupik, L. ; Collins-Hughes, E. ; Cui, W. ; Dickherber, R. ; Duke, C. ; Falcone, A. ; Finley, J. P. ; Fortson, L. ; Furniss, A. ; Galante, N. ; Gall, D. ; Godambe, S. ; Griffin, S. ; Guenette, R. ; Gyuk, G. ; Hanna, D. ; Holder, J. ; Hughes, G. ; Hui, C. M. ; Humensky, T. B. ; Imran, A. ; Kaaret, P. ; Kertzman, M. ; Krawczynski, H. ; Krennrich, F. ; Madhavan, A. S. ; Maier, G. ; Majumdar, P. ; McArthur, S. ; Moriarty, P. ; Ong, R. A. ; Otte, A. N. ; Pandel, D. ; Park, N. ; Perkins, J. S. ; Pohl, Martin ; Prokoph, H. ; Quinn, J. ; Ragan, K. ; Reyes, L. C. ; Reynolds, P. T. ; Roache, E. ; Rose, H. J. ; Saxon, D. B. ; Sembroski, G. H. ; Sentuerk, G. D. ; Smith, A. W. ; Tesic, G. ; Theiling, M. ; Thibadeau, S. ; Varlotta, A. ; Vincent, S. ; Vivier, M. ; Wakely, S. P. ; Ward, J. E. ; Weekes, T. C. ; Weinstein, A. ; Weisgarber, T. ; Weng, S. ; Williams, D. A. ; Wood, M. ; Zitzer, B.
Giant X-ray outbursts, with luminosities of about 10(37) erg s(-1), are observed roughly every five years from the nearby Be/pulsar binary 1A 0535+262. In this article, we present observations of the source with VERITAS at very high energies (VHEs; E > 100 GeV) triggered by the X-ray outburst in 2009 December. The observations started shortly after the onset of the outburst and provided comprehensive coverage of the episode, as well as the 111 day binary orbit. No VHE emission is evident at any time. We also examined data from the contemporaneous observations of 1A 0535+262 with the Fermi/Large Area Telescope at high-energy photons (E > 0.1 GeV) and failed to detect the source at GeV energies. The X-ray continua measured with the Swift/X-Ray Telescope and the RXTE/PCA can be well described by the combination of blackbody and Comptonized emission from thermal electrons. Therefore, the gamma-ray and X-ray observations suggest the absence of a significant population of non-thermal particles in the system. This distinguishes 1A 0535+262 from those Be X-ray binaries (such as PSR B1259-63 and LS I +61 degrees 303) that have been detected at GeV-TeV energies. We discuss the implications of the results on theoretical models.
Discovery of OF TeV Gamma-Ray emission from tycho's supernova remnant (2011)
Acciari, V. A. ; Aliu, E. ; Arlen, T. ; Aune, T. ; Beilicke, M. ; Benbow, W. ; Bradbury, S. M. ; Buckley, J. H. ; Bugaev, V. ; Byrum, K. ; Cannon, A. ; Cesarini, A. ; Ciupik, L. ; Collins-Hughes, E. ; Cui, W. ; Dickherber, R. ; Duke, C. ; Errando, M. ; Finley, J. P. ; Finnegan, G. ; Fortson, L. ; Furniss, A. ; Galante, N. ; Gall, D. ; Gillanders, G. H. ; Godambe, S. ; Griffin, S. ; Grube, J. ; Guenette, R. ; Gyuk, G. ; Hanna, D. ; Holder, J. ; Hughes, J. P. ; Hui, C. M. ; Humensky, T. B. ; Kaaret, P. ; Karlsson, N. ; Kertzman, M. ; Kieda, D. ; Krawczynski, H. ; Krennrich, F. ; Lang, M. J. ; LeBohec, S. ; Madhavan, A. S. ; Maier, G. ; Majumdar, P. ; McArthur, S. ; McCann, A. ; Moriarty, P. ; Mukherjee, R. ; Ong, R. A. ; Orr, M. ; Otte, A. N. ; Pandel, D. ; Park, N. H. ; Perkins, J. S. ; Pohl, Martin ; Quinn, J. ; Ragan, K. ; Reyes, L. C. ; Reynolds, P. T. ; Roache, E. ; Rose, H. J. ; Saxon, D. B. ; Schroedter, M. ; Sembroski, G. H. ; Senturk, G. Demet ; Slane, P. ; Smith, A. W. ; Tesic, G. ; Theiling, M. ; Thibadeau, S. ; Tsurusaki, K. ; Varlotta, A. ; Vassiliev, V. V. ; Vincent, S. ; Vivier, M. ; Wakely, S. P. ; Ward, J. E. ; Weekes, T. C. ; Weinstein, A. ; Weisgarber, T. ; Williams, D. A. ; Wood, M. ; Zitzer, B.
We report the discovery of TeV gamma-ray emission from the Type Ia supernova remnant (SNR) G120.1+1.4, known as Tycho's SNR. Observations performed in the period 2008-2010 with the VERITAS ground-based gamma-ray observatory reveal weak emission coming from the direction of the remnant, compatible with a point source located at 00(h)25(m)27(s).0, +64 degrees 10'50 '' (J2000). The TeV photon spectrum measured by VERITAS can be described with a power law dN/dE = C(E/3.42 TeV)(-Gamma) with Gamma = 1.95 +/- 0.51(stat) +/- 0.30(sys) and C = (1.55 +/- 0.43(stat) +/- 0.47(sys)) x 10(-14) cm(-2) s(-1) TeV-1. The integral flux above 1 TeV corresponds to similar to 0.9% of the steady Crab Nebula emission above the same energy, making it one of the weakest sources yet detected in TeV gamma rays. We present both leptonic and hadronic models that can describe the data. The lowest magnetic field allowed in these models is similar to 80 mu G, which may be interpreted as evidence for magnetic field amplification.
Veritas observatons of the microquasar cygnus X-3 (2013)
Archambault, S. ; Beilicke, M. ; Benbow, W. ; Berger, K. ; Bird, R. ; Bouvier, A. ; Buckley, J. H. ; Bugaev, V. ; Byrum, K. ; Cerruti, M. ; Chen, Xuhui ; Ciupik, L. ; Connolly, M. P. ; Cui, W. ; Duke, C. ; Dumm, J. ; Errando, M. ; Falcone, A. ; Federici, Simone ; Feng, Q. ; Finley, J. P. ; Fortson, L. ; Furniss, A. ; Galante, N. ; Gillanders, G. H. ; Griffin, S. ; Griffiths, S. T. ; Grube, J. ; Gyuk, G. ; Hanna, D. ; Holder, J. ; Hughes, G. ; Humensky, T. B. ; Kaaret, P. ; Kertzman, M. ; Khassen, Y. ; Kieda, D. ; Krawczynski, H. ; Lang, M. J. ; Madhavan, A. S. ; Maier, G. ; Majumdar, P. ; McArthur, S. ; McCann, A. ; Moriarty, P. ; Mukherjee, R. ; Nieto, D. ; de Bhroithe, A. O'Faolain ; Ong, R. A. ; Otte, A. N. ; Pandel, D. ; Park, N. ; Perkins, J. S. ; Pohl, Martin ; Popkow, A. ; Prokoph, H. ; Quinn, J. ; Ragan, K. ; Rajotte, J. ; Reyes, L. C. ; Reynolds, P. T. ; Richards, G. T. ; Roache, E. ; Sembroski, G. H. ; Sheidaei, F. ; Smith, A. W. ; Staszak, D. ; Telezhinsky, Igor ; Theiling, M. ; Tucci, J. V. ; Tyler, J. ; Varlotta, A. ; Vincent, S. ; Wakely, S. P. ; Weekes, T. C. ; Weinstein, A. ; Williams, D. A. ; Zitzer, B. ; McCollough, M. L.
We report results from TeV gamma-ray observations of the microquasar Cygnus X-3. The observations were made with the Very Energetic Radiation Imaging Telescope Array System (VERITAS) over a time period from 2007 June 11 to 2011 November 28. VERITAS is most sensitive to gamma rays at energies between 85 GeV and 30 TeV. The effective exposure time amounts to a total of about 44 hr, with the observations covering six distinct radio/X-ray states of the object. No significant TeV gamma-ray emission was detected in any of the states, nor with all observations combined. The lack of a positive signal, especially in the states where GeV gamma rays were detected, places constraints on TeV gamma-ray production in Cygnus X-3. We discuss the implications of the results.
Discovery of a new tev Gamma-Ray source - VER J0521+211 (2013)
Archambault, S. ; Arlen, T. ; Aune, T. ; Behera, B. ; Beilicke, M. ; Benbow, W. ; Bird, R. ; Bouvier, A. ; Buckley, J. H. ; Bugaev, V. ; Byrum, K. ; Cesarini, A. ; Ciupik, L. ; Connolly, M. P. ; Cui, W. ; Errando, M. ; Falcone, A. ; Federici, Simone ; Feng, Q. ; Finley, J. P. ; Fortson, L. ; Furniss, A. ; Galante, N. ; Gall, D. ; Gillanders, G. H. ; Griffin, S. ; Grube, J. ; Gyuk, G. ; Hanna, D. ; Holder, J. ; Hughes, G. ; Humensky, T. B. ; Kaaret, P. ; Kertzman, M. ; Khassen, Y. ; Kieda, D. ; Krawczynski, H. ; Krennrich, F. ; Kumar, S. ; Lang, M. J. ; Madhavan, A. S. ; Maier, G. ; Majumdar, P. ; McArthur, S. ; McCann, A. ; Millis, J. ; Moriarty, P. ; Mukherjee, R. ; de Bhroithe, A. O'Faolain ; Ong, R. A. ; Otte, A. N. ; Park, N. ; Perkins, J. S. ; Pohl, Martin ; Popkow, A. ; Prokoph, H. ; Quinn, J. ; Ragan, K. ; Reyes, L. C. ; Reynolds, P. T. ; Richards, G. T. ; Roache, E. ; Saxon, D. B. ; Sembroski, G. H. ; Smith, A. W. ; Staszak, D. ; Telezhinsky, Igor ; Theiling, M. ; Varlotta, A. ; Vassiliev, V. V. ; Vincent, S. ; Wakely, S. P. ; Weekes, T. C. ; Weinstein, A. ; Welsing, R. ; Williams, D. A. ; Zitzer, B. ; Boettcher, Markus ; Fegan, S. J. ; Fortin, P. ; Halpern, J. P. ; Kovalev, Y. Y. ; Lister, M. L. ; Liu, J. ; Pushkarev, A. B. ; Smith, P. S.
We report the detection of a new TeV gamma-ray source, VER J0521+211, based on observations made with the VERITAS imaging atmospheric Cherenkov Telescope Array. These observations were motivated by the discovery of a cluster of >30 GeV photons in the first year of Fermi Large Area Telescope observations. VER J0521+211 is relatively bright at TeV energies, with a mean photon flux of (1.93 +/- 0.13(stat) +/- 0.78(sys)) x 10(-11) cm(-2) s(-1) above 0.2 TeV during the period of the VERITAS observations. The source is strongly variable on a daily timescale across all wavebands, from optical to TeV, with a peak flux corresponding to similar to 0.3 times the steady Crab Nebula flux at TeV energies. Follow-up observations in the optical and X-ray bands classify the newly discovered TeV source as a BL Lac-type blazar with uncertain redshift, although recent measurements suggest z = 0.108. VER J0521+211 exhibits all the defining properties of blazars in radio, optical, X-ray, and gamma-ray wavelengths.
Very-high energy observations of the galactic center region by veritas IN 2010-2012 (2014)
Archer, A. ; Barnacka, Anna ; Beilicke, M. ; Benbow, W. ; Berger, K. ; Bird, R. ; Biteau, Jonathan ; Buckley, J. H. ; Bugaev, V. ; Byrum, K. ; Cardenzana, J. V. ; Cerruti, M. ; Chen, W. ; Chen, Xiaoming ; Ciupik, L. ; Connolly, M. P. ; Cui, W. ; Dickinson, H. J. ; Dumm, J. ; Eisch, J. D. ; Falcone, A. ; Federici, Simone ; Feng, Q. ; Finley, J. P. ; Fleischhack, H. ; Fortson, L. ; Furniss, A. ; Galante, N. ; Griffin, S. ; Griffiths, S. T. ; Grube, J. ; Gyuk, G. ; Hakansson, Nils ; Hanna, D. ; Holder, J. ; Hughes, G. ; Johnson, C. A. ; Kaaret, P. ; Kar, P. ; Kertzman, M. ; Khassen, Y. ; Kieda, D. ; Krawczynski, H. ; Kumar, S. ; Lang, M. J. ; Maier, G. ; McArthur, S. ; McCann, A. ; Meagher, K. ; Moriarty, P. ; Mukherjee, R. ; Nieto, D. ; Ong, R. A. ; Otte, A. N. ; Park, N. ; Perkins, J. S. ; Pohl, Manuela ; Popkow, A. ; Prokoph, H. ; Pueschel, E. ; Quinn, J. ; Ragan, K. ; Rajotte, J. ; Reyes, L. C. ; Reynolds, P. T. ; Richards, G. T. ; Roache, E. ; Sembroski, G. H. ; Shahinyan, K. ; Smith, A. W. ; Staszak, D. ; Telezhinsky, Igor ; Tucci, J. V. ; Tyler, J. ; Varlotta, A. ; Vincent, S. ; Wakely, S. P. ; Weinstein, A. ; Welsing, R. ; Wilhelm, A. ; Williams, D. A. ; Zajczyk, A. ; Zitzer, B.
The Galactic center is an interesting region for high-energy (0.1-100 GeV) and very-high-energy (E > 100 GeV) gamma-ray observations. Potential sources of GeV/TeV gamma-ray emission have been suggested, e.g., the accretion of matter onto the supermassive black hole, cosmic rays from a nearby supernova remnant (e.g., Sgr A East), particle acceleration in a plerion, or the annihilation of dark matter particles. The Galactic center has been detected by EGRET and by Fermi/LAT in the MeV/GeV energy band. At TeV energies, the Galactic center was detected with moderate significance by the CANGAROO and Whipple 10 m telescopes and with high significance by H.E.S.S., MAGIC, and VERITAS. We present the results from three years of VERITAS observations conducted at large zenith angles resulting in a detection of the Galactic center on the level of 18 standard deviations at energies above similar to 2.5 TeV. The energy spectrum is derived and is found to be compatible with hadronic, leptonic, and hybrid emission models discussed in the literature. Future, more detailed measurements of the high-energy cutoff and better constraints on the high-energy flux variability will help to refine and/or disentangle the individual models.
Constraints on very high energy emission from GRB 130427A (2014)
Aliu, E. ; Aune, T. ; Barnacka, Anna ; Beilicke, M. ; Benbow, W. ; Berger, K. ; Biteau, Jonathan ; Buckley, J. H. ; Bugaev, V. ; Byrum, K. ; Cardenzana, J. V. ; Cerruti, M. ; Chen, Xuhui ; Ciupik, L. ; Connaughton, V. ; Cui, W. ; Dickinson, H. J. ; Eisch, J. D. ; Errando, M. ; Falcone, A. ; Federici, Simone ; Feng, Q. ; Finley, J. P. ; Fleischhack, H. ; Fortin, P. ; Fortson, L. ; Furniss, A. ; Galante, N. ; Gillanders, G. H. ; Griffin, S. ; Griffiths, S. T. ; Grube, J. ; Gyuk, G. ; Hakansson, Nils ; Hanna, D. ; Holder, J. ; Hughes, G. ; Humensky, T. B. ; Johnson, C. A. ; Kaaret, P. ; Kar, P. ; Kertzman, M. ; Khassen, Y. ; Kieda, D. ; Krawczynski, H. ; Krennrich, F. ; Lang, M. J. ; Madhavan, A. S. ; Maier, G. ; McArthur, S. ; McCann, A. ; Meagher, K. ; Millis, J. ; Moriarty, P. ; Mukherjee, R. ; Nieto, D. ; Ong, R. A. ; Otte, A. N. ; Park, N. ; Pohl, Martin ; Popkow, A. ; Prokoph, H. ; Pueschel, E. ; Quinn, J. ; Ragan, K. ; Rajotte, J. ; Reyes, L. C. ; Reynolds, P. T. ; Richards, G. T. ; Roache, E. ; Sembroski, G. H. ; Shahinyan, K. ; Smith, A. W. ; Staszak, D. ; Telezhinsky, Igor ; Tucci, J. V. ; Tyler, J. ; Varlotta, A. ; Vassiliev, V. V. ; Vincent, S. ; Wakely, S. P. ; Weiner, O. M. ; Weinstein, A. ; Welsing, R. ; Wilhelm, Alina ; Williams, D. A. ; Zitzer, B. ; McEnery, J. E. ; Perkins, J. S. ; Veres, P. ; Zhu, S.
Prompt emission from the very fluent and nearby (z = 0.34) gamma-ray burst GRB130427A was detected by several orbiting telescopes and by ground-based, wide-field-of-view optical transient monitors. Apart from the intensity and proximity of this GRB, it is exceptional due to the extremely long-lived high-energy (100 MeV to 100 GeV) gamma-ray emission, which was detected by the Large Area Telescope on the Fermi Gamma-Ray Space Telescope for similar to 70 ks after the initial burst. The persistent, hard-spectrum, high-energy emission suggests that the highest-energy gamma rays may have been produced via synchrotron self-Compton processes though there is also evidence that the high-energy emission may instead be an extension of the synchrotron spectrum. VERITAS, a ground-based imaging atmospheric Cherenkov telescope array, began follow-up observations of GRB130427A similar to 71 ks (similar to 20 hr) after the onset of the burst. The GRB was not detected with VERITAS; however, the high elevation of the observations, coupled with the low redshift of the GRB, make VERITAS a very sensitive probe of the emission from GRB130427A for E > 100 GeV. The non-detection and consequent upper limit derived place constraints on the synchrotron self-Compton model of high-energy gamma-ray emission from this burst.
  • 1 to 10

OPUS4 Logo  KOBV Logo  OAI Logo  DINI Zertifikat 2007  OA Netzwerk Logo

    • Publication server
    • University Bibliography
    • University Library
    • Policy
    • Contact
    • Imprint
    • Privacy Policy
    • Accessibility

    Login