### Refine

#### Institute

We study Poincare recurrence of chaotic attractors for regions of finite size. Contrary to the standard case, where the size of the recurrent regions tends to zero, the measure is no longer supported solely by unstable periodic orbits of finite length inside it, but also by other special recurrent trajectories, located outside that region. The presence of the latter leads to a deviation of the distribution of the Poincare first return times from a Poissonian. Consequently, by taking into account the contribution of these special recurrent trajectories, a corrected estimate of the measure is obtained. This has wide experimental implications, as in the laboratory all returns can exclusively be observed for regions of finite size, and only unstable periodic orbits of finite length can be detected

In a 2D parameter space, by using nine experimental time series of a Clitia's circuit, we characterized three codimension-1 chaotic fibers parallel to a period-3 window. To show the local preservation of the properties of the chaotic attractors in each fiber, we applied the closed return technique and two distinct topological methods. With the first topological method we calculated the linking, numbers in the sets of unstable periodic orbits, and with the second one we obtained the symbolic planes and the topological entropies by applying symbolic dynamic analysis.

Concepts from Ergodic Theory are used to describe the existence of special non-transitive maps in attractors of phase synchronous chaotic oscillators. In particular, it is shown that, for a class of phase-coherent oscillators, these special maps imply phase synchronization. We illustrate these ideas in the sinusoidally forced Chua's circuit and two coupled Rossler oscillators. Furthermore, these results are extended to other coupled chaotic systems. In addition, a phase for a chaotic attractor is defined from the tangent vector of the flow. Finally, it is discussed how these maps can be used for the real-time detection of phase synchronization in experimental systems. (c) 2005 Elsevier B.V. All rights reserved

We show many versatile phase synchronous configurations that emerge in an array of coupled chaotic elements due to the presence of a periodic stimulus. Then, we explain the relevance of these configurations to the understanding of how information about such a. stimulus is transmitted from one side to the other in this array. The stimulus actively creates the ways to be transmitted, by making the chaotic elements to phase synchronize

Chaotic channel
(2005)

This work combines the theory of chaotic synchronization with the theory of information in order to introduce the chaotic channel, an active medium formed by connected chaotic systems. This subset of a large chaotic net represents the path along which information flows. We show that the possible amount of information exchange between the transmitter, where information enters the net, and the receiver, the destination of the information, is proportional to the level of synchronization between these two special subsystems