### Refine

#### Document Type

- Article (6)
- Doctoral Thesis (1)

#### Keywords

- Chaostheorie (1)
- Nichtlineare Dynamik (1)
- Stochastische Prozesse (1)
- Synchronisation (1)
- chaos (1)
- nonlinear dynamics (1)
- stochastic processes (1)
- synchronization (1)

We study two coupled spatially extended dynamical systems which exhibit space-time chaos. The transition to the synchronized state is treated as a nonequilibrium phase transition, where the average synchronization error is the order parameter. The transition in one-dimensional systems is found to be generically in the universality class of the Kardar- Parisi-Zhang equation with a growth-limiting term ("bounded KPZ"). For systems with very strong nonlinearities in the local dynamics, however, the transition is found to be in the universality class of directed percolation.

A simple one-dimensional microscopic model of the depinning transition of an interface from an attractive hard wall is introduced and investigated. Upon varying a control parameter, the critical behavior observed along the transition line changes from a directed-percolation type to a multiplicative-noise type. Numerical simulations allow for a quantitative study of the multicritical point separating the two regions. Mean-field arguments and the mapping on yet a simpler model provide some further insight on the overall scenario

The behavior of the Lyapunov exponents (LEs) of a disordered system consisting of mutually coupled chaotic maps with different parameters is studied. The LEs are demonstrated to exhibit avoided crossing and level repulsion, qualitatively similar to the behavior of energy levels in quantum chaos. Recent results for the coupling dependence of the LEs of two coupled chaotic systems are used to explain the phenomenon and to derive an approximate expression for the distribution functions of LE spacings. The depletion of the level spacing distribution is shown to be exponentially strong at small values. The results are interpreted in terms of the random matrix theory.

Subject of this work is the investigation of universal scaling laws which are observed in coupled chaotic systems. Progress is made by replacing the chaotic fluctuations in the perturbation dynamics by stochastic processes. First, a continuous-time stochastic model for weakly coupled chaotic systems is introduced to study the scaling of the Lyapunov exponents with the coupling strength (coupling sensitivity of chaos). By means of the the Fokker-Planck equation scaling relations are derived, which are confirmed by results of numerical simulations. Next, the new effect of avoided crossing of Lyapunov exponents of weakly coupled disordered chaotic systems is described, which is qualitatively similar to the energy level repulsion in quantum systems. Using the scaling relations obtained for the coupling sensitivity of chaos, an asymptotic expression for the distribution function of small spacings between Lyapunov exponents is derived and compared with results of numerical simulations. Finally, the synchronization transition in strongly coupled spatially extended chaotic systems is shown to resemble a continuous phase transition, with the coupling strength and the synchronization error as control and order parameter, respectively. Using results of numerical simulations and theoretical considerations in terms of a multiplicative noise partial differential equation, the universality classes of the observed two types of transition are determined (Kardar-Parisi-Zhang equation with saturating term, directed percolation).

We develop a statistical theory of the coupling sensitivity of chaos. The effect was first described by Daido [Prog. Theor. Phys. 72, 853 (1984)]; it appears as a logarithmic singularity in the Lyapunov exponent in coupled chaotic systems at very small couplings. Using a continuous-time stochastic model for the coupled systems we derive a scaling relation for the largest Lyapunov exponent. The singularity is shown to depend on the coupling and the systems' mismatch. Generalizations to the cases of asymmetrical coupling and three interacting oscillators are considered, too. The analytical results are confirmed by numerical simulations.