### Refine

#### Year of publication

- 2014 (53) (remove)

#### Document Type

- Article (33)
- Preprint (12)
- Doctoral Thesis (5)
- Monograph/Edited Volume (1)
- Conference Proceeding (1)
- Other (1)

#### Language

- English (53) (remove)

#### Keywords

- Earthquake interaction (2)
- Statistical seismology (2)
- non-Markov drift (2)
- singular perturbation (2)
- stochastic differential equations (2)
- 35J70 (1)
- 47A52 (1)
- 47G30 (1)
- 58J40 (1)
- 65R20 (1)

#### Institute

- Institut für Mathematik (53) (remove)

We consider a finite-dimensional deterministic dynamical system with the global attractor ? which supports a unique ergodic probability measure P. The measure P can be considered as the uniform long-term mean of the trajectories staying in a bounded domain D containing ?. We perturb the dynamical system by a multiplicative heavy tailed Levy noise of small intensity E>0 and solve the asymptotic first exit time and location problem from D in the limit of E?0. In contrast to the case of Gaussian perturbations, the exit time has an algebraic exit rate as a function of E, just as in the case when ? is a stable fixed point studied earlier in [9, 14, 19, 26]. As an example, we study the first exit problem from a neighborhood of the stable limit cycle for the Van der Pol oscillator perturbed by multiplicative -stable Levy noise.

The Runge-Kutta type regularization method was recently proposed as a potent tool for the iterative solution of nonlinear ill-posed problems. In this paper we analyze the applicability of this regularization method for solving inverse problems arising in atmospheric remote sensing, particularly for the retrieval of spheroidal particle distribution. Our numerical simulations reveal that the Runge-Kutta type regularization method is able to retrieve two-dimensional particle distributions using optical backscatter and extinction coefficient profiles, as well as depolarization information.

In this paper a linear-time algorithm for the minimization of acyclic deterministic finite-state automata is presented. The algorithm runs significantly faster than previous algorithms for the same task. This is shown by a comparison of the running times of both algorithms. Additionally, a variation of the new algorithm is presented which handles cyclic automata as input. The new cycle-aware algorithm minimizes acyclic automata in the desired way. In case of cyclic input, the algorithm minimizes all acyclic suffixes of the input automaton.

We consider statistical hypothesis testing simultaneously over a fairly general, possibly uncountably infinite, set of null hypotheses, under the assumption that a suitable single test (and corresponding p-value) is known for each individual hypothesis. We extend to this setting the notion of false discovery rate (FDR) as a measure of type I error. Our main result studies specific procedures based on the observation of the p-value process. Control of the FDR at a nominal level is ensured either under arbitrary dependence of p-values, or under the assumption that the finite dimensional distributions of the p-value process have positive correlations of a specific type (weak PRDS). Both cases generalize existing results established in the finite setting. Its interest is demonstrated in several non-parametric examples: testing the mean/signal in a Gaussian white noise model, testing the intensity of a Poisson process and testing the c.d.f. of i.i.d. random variables.

We introduce the concept of a conical zeta value as a geometric generalization of a multiple zeta value in the context of convex cones. The quasi-shuffle and shuffle relations of multiple zeta values are generalized to open cone subdivision and closed cone subdivision relations respectively for conical zeta values. In order to achieve the closed cone subdivision relation, we also interpret linear relations among fractions as subdivisions of decorated closed cones. As a generalization of the double shuffle relation of multiple zeta values, we give the double subdivision relation of conical zeta values and formulate the extended double subdivision relation conjecture for conical zeta values.

Let M be a closed connected spin manifold of dimension 2 or 3 with a fixed orientation and a fixed spin structure. We prove that for a generic Riemannian metric on M the non-harmonic eigenspinors of the Dirac operator are nowhere zero. The proof is based on a transversality theorem and the unique continuation property of the Dirac operator.

We study mixed boundary value problems, here mainly of Zaremba type for the Laplacian within an edge algebra of boundary value problems. The edge here is the interface of the jump from the Dirichlet to the Neumann condition. In contrast to earlier descriptions of mixed problems within such an edge calculus, cf. (Harutjunjan and Schulze, Elliptic mixed, transmission and singular crack problems, 2008), we focus on new Mellin edge quantisations of the Dirichlet-to-Neumann operator on the Neumann side of the boundary and employ a pseudo-differential calculus of corresponding boundary value problems without the transmission property at the interface. This allows us to construct parametrices for the original mixed problem in a new and transparent way.