### Refine

#### Year of publication

- 2014 (53) (remove)

#### Document Type

- Article (33)
- Preprint (12)
- Doctoral Thesis (5)
- Monograph/Edited Volume (1)
- Conference Proceeding (1)
- Other (1)

#### Language

- English (53) (remove)

#### Keywords

- Earthquake interaction (2)
- Statistical seismology (2)
- non-Markov drift (2)
- singular perturbation (2)
- stochastic differential equations (2)
- 35J70 (1)
- 47A52 (1)
- 47G30 (1)
- 58J40 (1)
- 65R20 (1)

#### Institute

- Institut für Mathematik (53) (remove)

Ausgehend von der typischen IT‐Infrastruktur für E‐Learning an Hochschulen auf der einen Seite sowie vom bisherigen Stand der Forschung zu Personal Learning Environments (PLEs) auf der anderen Seite zeigt dieser Beitrag auf, wie bestehende Werkzeuge bzw. Dienste zusammengeführt und für die Anforderungen der modernen, rechnergestützten Präsenzlehre aufbereitet werden können. Für diesen interdisziplinären Entwicklungsprozess bieten sowohl klassische Softwareentwicklungsverfahren als auch bestehende PLE‐Modelle wenig Hilfestellung an. Der Beitrag beschreibt die in einem campusweiten Projekt an der Universität Potsdam verfolgten Ansätze und die damit erzielten Ergebnisse. Dafür werden zunächst typische Lehr‐/Lern‐bzw. Kommunikations‐Szenarien identifiziert, aus denen Anforderungen an eine unterstützende Plattform abgeleitet werden. Dies führt zu einer umfassenden Sammlung zu berücksichtigender Dienste und deren Funktionen, die gemäß den Spezifika ihrer Nutzung in ein Gesamtsystem zu integrieren sind. Auf dieser Basis werden grundsätzliche Integrationsansätze und technische Details dieses Mash‐Ups in einer Gesamtschau aller relevanten Dienste betrachtet und in eine integrierende Systemarchitektur überführt. Deren konkrete Realisierung mit Hilfe der Portal‐Technologie Liferay wird dargestellt, wobei die eingangs definierten Szenarien aufgegriffen und exemplarisch vorgestellt werden. Ergänzende Anpassungen im Sinne einer personalisierbaren bzw. adaptiven Lern‐(und Arbeits‐)Umgebung werden ebenfalls unterstützt und kurz aufgezeigt.

We investigate nonlinear problems which appear as Euler-Lagrange equations for a variational problem. They include in particular variational boundary value problems for nonlinear elliptic equations studied by F. Browder in the 1960s. We establish a solvability criterion of such problems and elaborate an efficient orthogonal projection method for constructing approximate solutions.

In quantum mechanics the temporal decay of certain resonance states is associated with an effective time evolution e(-ith(kappa)), where h(.) is an analytic family of non-self-adjoint matrices. In general the corresponding resonance states do not decay exponentially in time. Using analytic perturbation theory, we derive asymptotic expansions for e(-ith(kappa)), simultaneously in the limits kappa -> 0 and t -> infinity, where the corrections with respect to pure exponential decay have uniform bounds in one complex variable kappa(2)t.
In the Appendix we briefly review analytic perturbation theory, replacing the classical reference to the 1920 book of Knopp [Funktionentheorie II, Anwendungen und Weiterfuhrung der allgemeinen Theorie, Sammlung Goschen, Vereinigung wissenschaftlicher Verleger Walter de Gruyter, 1920] and its terminology by standard modern references. This might be of independent interest.

We consider infinite-dimensional diffusions where the interaction between the coordinates has a finite extent both in space and time. In particular, it is not supposed to be smooth or Markov. The initial state of the system is Gibbs, given by a strong summable interaction. If the strongness of this initial interaction is lower than a suitable level, and if the dynamical interaction is bounded from above in a right way, we prove that the law of the diffusion at any time t is a Gibbs measure with absolutely summable interaction. The main tool is a cluster expansion in space uniformly in time of the Girsanov factor coming from the dynamics and exponential ergodicity of the free dynamics to an equilibrium product measure.

We study two notions of relative differential cohomology, using the model of differential characters. The two notions arise from the two options to construct relative homology, either by cycles of a quotient complex or of a mapping cone complex. We discuss the relation of the two notions of relative differential cohomology to each other. We discuss long exact sequences for both notions, thereby clarifying their relation to absolute differential cohomology. We construct the external and internal product of relative and absolute characters and show that relative differential cohomology is a right module over the absolute differential cohomology ring. Finally we construct fiber integration and transgression for relative differential characters.

We study Cheeger-Simons differential characters and provide geometric descriptions of the ring structure and of the fiber integration map. The uniqueness of differential cohomology (up to unique natural transformation) is proved by deriving an explicit formula for any natural transformation between a differential cohomology theory and the model given by differential characters. Fiber integration for fibers with boundary is treated in the context of relative differential characters. As applications we treat higher-dimensional holonomy, parallel transport, and transgression.

We consider a finite-dimensional deterministic dynamical system with the global attractor ? which supports a unique ergodic probability measure P. The measure P can be considered as the uniform long-term mean of the trajectories staying in a bounded domain D containing ?. We perturb the dynamical system by a multiplicative heavy tailed Levy noise of small intensity E>0 and solve the asymptotic first exit time and location problem from D in the limit of E?0. In contrast to the case of Gaussian perturbations, the exit time has an algebraic exit rate as a function of E, just as in the case when ? is a stable fixed point studied earlier in [9, 14, 19, 26]. As an example, we study the first exit problem from a neighborhood of the stable limit cycle for the Van der Pol oscillator perturbed by multiplicative -stable Levy noise.

The Runge-Kutta type regularization method was recently proposed as a potent tool for the iterative solution of nonlinear ill-posed problems. In this paper we analyze the applicability of this regularization method for solving inverse problems arising in atmospheric remote sensing, particularly for the retrieval of spheroidal particle distribution. Our numerical simulations reveal that the Runge-Kutta type regularization method is able to retrieve two-dimensional particle distributions using optical backscatter and extinction coefficient profiles, as well as depolarization information.

In this paper a linear-time algorithm for the minimization of acyclic deterministic finite-state automata is presented. The algorithm runs significantly faster than previous algorithms for the same task. This is shown by a comparison of the running times of both algorithms. Additionally, a variation of the new algorithm is presented which handles cyclic automata as input. The new cycle-aware algorithm minimizes acyclic automata in the desired way. In case of cyclic input, the algorithm minimizes all acyclic suffixes of the input automaton.

We consider statistical hypothesis testing simultaneously over a fairly general, possibly uncountably infinite, set of null hypotheses, under the assumption that a suitable single test (and corresponding p-value) is known for each individual hypothesis. We extend to this setting the notion of false discovery rate (FDR) as a measure of type I error. Our main result studies specific procedures based on the observation of the p-value process. Control of the FDR at a nominal level is ensured either under arbitrary dependence of p-values, or under the assumption that the finite dimensional distributions of the p-value process have positive correlations of a specific type (weak PRDS). Both cases generalize existing results established in the finite setting. Its interest is demonstrated in several non-parametric examples: testing the mean/signal in a Gaussian white noise model, testing the intensity of a Poisson process and testing the c.d.f. of i.i.d. random variables.

We introduce the concept of a conical zeta value as a geometric generalization of a multiple zeta value in the context of convex cones. The quasi-shuffle and shuffle relations of multiple zeta values are generalized to open cone subdivision and closed cone subdivision relations respectively for conical zeta values. In order to achieve the closed cone subdivision relation, we also interpret linear relations among fractions as subdivisions of decorated closed cones. As a generalization of the double shuffle relation of multiple zeta values, we give the double subdivision relation of conical zeta values and formulate the extended double subdivision relation conjecture for conical zeta values.

Let M be a closed connected spin manifold of dimension 2 or 3 with a fixed orientation and a fixed spin structure. We prove that for a generic Riemannian metric on M the non-harmonic eigenspinors of the Dirac operator are nowhere zero. The proof is based on a transversality theorem and the unique continuation property of the Dirac operator.

We study mixed boundary value problems, here mainly of Zaremba type for the Laplacian within an edge algebra of boundary value problems. The edge here is the interface of the jump from the Dirichlet to the Neumann condition. In contrast to earlier descriptions of mixed problems within such an edge calculus, cf. (Harutjunjan and Schulze, Elliptic mixed, transmission and singular crack problems, 2008), we focus on new Mellin edge quantisations of the Dirichlet-to-Neumann operator on the Neumann side of the boundary and employ a pseudo-differential calculus of corresponding boundary value problems without the transmission property at the interface. This allows us to construct parametrices for the original mixed problem in a new and transparent way.

We establish a quantisation of corner-degenerate symbols, here called Mellin-edge quantisation, on a manifold with second order singularities. The typical ingredients come from the "most singular" stratum of which is a second order edge where the infinite transversal cone has a base that is itself a manifold with smooth edge. The resulting operator-valued amplitude functions on the second order edge are formulated purely in terms of Mellin symbols taking values in the edge algebra over . In this respect our result is formally analogous to a quantisation rule of (Osaka J. Math. 37:221-260, 2000) for the simpler case of edge-degenerate symbols that corresponds to the singularity order 1. However, from the singularity order 2 on there appear new substantial difficulties for the first time, partly caused by the edge singularities of the cone over that tend to infinity.

In a recent paper, the Lefschetz number for endomorphisms (modulo trace class operators) of sequences of trace class curvature was introduced. We show that this is a well defined, canonical extension of the classical Lefschetz number and establish the homotopy invariance of this number. Moreover, we apply the results to show that the Lefschetz fixed point formula holds for geometric quasiendomorphisms of elliptic quasicomplexes.

Two recent works have adapted the Kalman-Bucy filter into an ensemble setting. In the first formulation, the ensemble of perturbations is updated by the solution of an ordinary differential equation (ODE) in pseudo-time, while the mean is updated as in the standard Kalman filter. In the second formulation, the full ensemble is updated in the analysis step as the solution of single set of ODEs in pseudo-time. Neither requires matrix inversions except for the frequently diagonal observation error covariance.
We analyse the behaviour of the ODEs involved in these formulations. We demonstrate that they stiffen for large magnitudes of the ratio of background error to observational error variance, and that using the integration scheme proposed in both formulations can lead to failure. A numerical integration scheme that is both stable and is not computationally expensive is proposed. We develop transform-based alternatives for these Bucy-type approaches so that the integrations are computed in ensemble space where the variables are weights (of dimension equal to the ensemble size) rather than model variables.
Finally, the performance of our ensemble transform Kalman-Bucy implementations is evaluated using three models: the 3-variable Lorenz 1963 model, the 40-variable Lorenz 1996 model, and a medium complexity atmospheric general circulation model known as SPEEDY. The results from all three models are encouraging and warrant further exploration of these assimilation techniques.

The inverse problem of determining the flow at the Earth's core-mantle boundary according to an outer core magnetic field and secular variation model has been investigated through a Bayesian formalism. To circumvent the issue arising from the truncated nature of the available fields, we combined two modeling methods. In the first step, we applied a filter on the magnetic field to isolate its large scales by reducing the energy contained in its small scales, we then derived the dynamical equation, referred as filtered frozen flux equation, describing the spatiotemporal evolution of the filtered part of the field. In the second step, we proposed a statistical parametrization of the filtered magnetic field in order to account for both its remaining unresolved scales and its large-scale uncertainties. These two modeling techniques were then included in the Bayesian formulation of the inverse problem. To explore the complex posterior distribution of the velocity field resulting from this development, we numerically implemented an algorithm based on Markov chain Monte Carlo methods. After evaluating our approach on synthetic data and comparing it to previously introduced methods, we applied it to a magnetic field model derived from satellite data for the single epoch 2005.0. We could confirm the existence of specific features already observed in previous studies. In particular, we retrieved the planetary scale eccentric gyre characteristic of flow evaluated under the compressible quasi-geostrophy assumption although this hypothesis was not considered in our study. In addition, through the sampling of the velocity field posterior distribution, we could evaluate the reliability, at any spatial location and at any scale, of the flow we calculated. The flow uncertainties we determined are nevertheless conditioned by the choice of the prior constraints we applied to the velocity field.

We discuss the solution theory of operators of the form del(x) + A, acting on smooth sections of a vector bundle with connection del over a manifold M, where X is a vector field having a critical point with positive linearization at some point p is an element of M. As an operator on a suitable space of smooth sections Gamma(infinity)(U, nu), it fulfills a Fredholm alternative, and the same is true for the adjoint operator. Furthermore, we show that the solutions depend smoothly on the data del, X and A.

We describe an iterative method to combine seismicity forecasts. With this method, we produce the next generation of a starting forecast by incorporating predictive skill from one or more input forecasts. For a single iteration, we use the differential probability gain of an input forecast relative to the starting forecast. At each point in space and time, the rate in the next-generation forecast is the product of the starting rate and the local differential probability gain. The main advantage of this method is that it can produce high forecast rates using all types of numerical forecast models, even those that are not rate-based. Naturally, a limitation of this method is that the input forecast must have some information not already contained in the starting forecast. We illustrate this method using the Every Earthquake a Precursor According to Scale (EEPAS) and Early Aftershocks Statistics (EAST) models, which are currently being evaluated at the US testing center of the Collaboratory for the Study of Earthquake Predictability. During a testing period from July 2009 to December 2011 (with 19 target earthquakes), the combined model we produce has better predictive performance - in terms of Molchan diagrams and likelihood - than the starting model (EEPAS) and the input model (EAST). Many of the target earthquakes occur in regions where the combined model has high forecast rates. Most importantly, the rates in these regions are substantially higher than if we had simply averaged the models.

The subject of this paper is solutions of an autoresonance equation. We look for a connection between the parameters of the solution bounded as t -> -infinity, and the parameters of two two-parameter families of solutions as t -> infinity. One family consists of the solutions which are not captured into resonance, and another of those increasing solutions which are captured into resonance. In this way we describe the transition through the separatrix for equations with slowly varying parameters and get an estimate for parameters before the resonance of those solutions which may be captured into autoresonance. (C) 2014 AIP Publishing LLC.

We investigate spatio-temporal properties of earthquake patterns in the San Jacinto fault zone (SJFZ), California, between Cajon Pass and the Superstition Hill Fault, using a long record of simulated seismicity constrained by available seismological and geological data. The model provides an effective realization of a large segmented strike-slip fault zone in a 3D elastic half-space, with heterogeneous distribution of static friction chosen to represent several clear step-overs at the surface. The simulated synthetic catalog reproduces well the basic statistical features of the instrumental seismicity recorded at the SJFZ area since 1981. The model also produces events larger than those included in the short instrumental record, consistent with paleo-earthquakes documented at sites along the SJFZ for the last 1,400 years. The general agreement between the synthetic and observed data allows us to address with the long-simulated seismicity questions related to large earthquakes and expected seismic hazard. The interaction between m a parts per thousand yen 7 events on different sections of the SJFZ is found to be close to random. The hazard associated with m a parts per thousand yen 7 events on the SJFZ increases significantly if the long record of simulated seismicity is taken into account. The model simulations indicate that the recent increased number of observed intermediate SJFZ earthquakes is a robust statistical feature heralding the occurrence of m a parts per thousand yen 7 earthquakes. The hypocenters of the m a parts per thousand yen 5 events in the simulation results move progressively towards the hypocenter of the upcoming m a parts per thousand yen 7 earthquake.

In the limit 0 we analyse the generators H of families of reversible jump processes in Rd associated with a class of symmetric non-local Dirichlet-forms and show exponential decay of the eigenfunctions. The exponential rate function is a Finsler distance, given as solution of a certain eikonal equation. Fine results are sensitive to the rate function being C2 or just Lipschitz. Our estimates are analogous to the semiclassical Agmon estimates for differential operators of second order. They generalize and strengthen previous results on the lattice Zd. Although our final interest is in the (sub)stochastic jump process, technically this is a pure analysis paper, inspired by PDE techniques.

The injection of fluids is a well-known origin for the triggering of earthquake sequences. The growing number of projects related to enhanced geothermal systems, fracking, and others has led to the question, which maximum earthquake magnitude can be expected as a consequence of fluid injection? This question is addressed from the perspective of statistical analysis. Using basic empirical laws of earthquake statistics, we estimate the magnitude M-T of the maximum expected earthquake in a predefined future time window T-f. A case study of the fluid injection site at Paradox Valley, Colorado, demonstrates that the magnitude m 4.3 of the largest observed earthquake on 27 May 2000 lies very well within the expectation from past seismicity without adjusting any parameters. Vice versa, for a given maximum tolerable earthquake at an injection site, we can constrain the corresponding amount of injected fluids that must not be exceeded within predefined confidence bounds.

We characterize maximal subsemigroups of the monoid T(X) of all transformations on the set X = a"center dot of natural numbers containing a given subsemigroup W of T(X) such that T(X) is finitely generated over W. This paper gives a contribution to the characterization of maximal subsemigroups on the monoid of all transformations on an infinite set.

Creation of topographic maps
(2014)

Location analyses are among the most common tasks while working with spatial data and geographic information systems. Automating the most frequently used procedures is therefore an important aspect of improving their usability. In this context, this project aims to design and implement a workflow, providing some basic tools for a location analysis. For the implementation with jABC, the workflow was applied to the problem of finding a suitable location for placing an artificial reef. For this analysis three parameters (bathymetry, slope and grain size of the ground material) were taken into account, processed, and visualized with the The Generic Mapping Tools (GMT), which were integrated into the workflow as jETI-SIBs. The implemented workflow thereby showed that the approach to combine jABC with GMT resulted in an user-centric yet user-friendly tool with high-quality cartographic outputs.

Geometric electroelasticity
(2014)

In this work a diffential geometric formulation of the theory of electroelasticity is developed which also includes thermal and magnetic influences. We study the motion of bodies consisting of an elastic material that are deformed by the influence of mechanical forces, heat and an external electromagnetic field. To this end physical balance laws (conservation of mass, balance of momentum, angular momentum and energy) are established. These provide an equation that describes the motion of the body during the deformation. Here the body and the surrounding space are modeled as Riemannian manifolds, and we allow that the body has a lower dimension than the surrounding space. In this way one is not (as usual) restricted to the description of the deformation of three-dimensional bodies in a three-dimensional space, but one can also describe the deformation of membranes and the deformation in a curved space. Moreover, we formulate so-called constitutive relations that encode the properties of the used material. Balance of energy as a scalar law can easily be formulated on a Riemannian manifold. The remaining balance laws are then obtained by demanding that balance of energy is invariant under the action of arbitrary diffeomorphisms on the surrounding space. This generalizes a result by Marsden and Hughes that pertains to bodies that have the same dimension as the surrounding space and does not allow the presence of electromagnetic fields. Usually, in works on electroelasticity the entropy inequality is used to decide which otherwise allowed deformations are physically admissible and which are not. It is alsoemployed to derive restrictions to the possible forms of constitutive relations describing the material. Unfortunately, the opinions on the physically correct statement of the entropy inequality diverge when electromagnetic fields are present. Moreover, it is unclear how to formulate the entropy inequality in the case of a membrane that is subjected to an electromagnetic field. Thus, we show that one can replace the use of the entropy inequality by the demand that for a given process balance of energy is invariant under the action of arbitrary diffeomorphisms on the surrounding space and under linear rescalings of the temperature. On the one hand, this demand also yields the desired restrictions to the form of the constitutive relations. On the other hand, it needs much weaker assumptions than the arguments in physics literature that are employing the entropy inequality. Again, our result generalizes a theorem of Marsden and Hughes. This time, our result is, like theirs, only valid for bodies that have the same dimension as the surrounding space.

The International Project for the Evaluation of Educational Achievement (IEA) was formed in the 1950s (Postlethwaite, 1967). Since that time, the IEA has conducted many studies in the area of mathematics, such as the First International Mathematics Study (FIMS) in 1964, the Second International Mathematics Study (SIMS) in 1980-1982, and a series of studies beginning with the Third International Mathematics and Science Study (TIMSS) which has been conducted every 4 years since 1995. According to Stigler et al. (1999), in the FIMS and the SIMS, U.S. students achieved low scores in comparison with students in other countries (p. 1). The TIMSS 1995 “Videotape Classroom Study” was therefore a complement to the earlier studies conducted to learn “more about the instructional and cultural processes that are associated with achievement” (Stigler et al., 1999, p. 1). The TIMSS Videotape Classroom Study is known today as the TIMSS Video Study. From the findings of the TIMSS 1995 Video Study, Stigler and Hiebert (1999) likened teaching to “mountain ranges poking above the surface of the water,” whereby they implied that we might see the mountaintops, but we do not see the hidden parts underneath these mountain ranges (pp. 73-78). By watching the videotaped lessons from Germany, Japan, and the United States again and again, they discovered that “the systems of teaching within each country look similar from lesson to lesson. At least, there are certain recurring features [or patterns] that typify many of the lessons within a country and distinguish the lessons among countries” (pp. 77-78). They also discovered that “teaching is a cultural activity,” so the systems of teaching “must be understood in relation to the cultural beliefs and assumptions that surround them” (pp. 85, 88). From this viewpoint, one of the purposes of this dissertation was to study some cultural aspects of mathematics teaching and relate the results to mathematics teaching and learning in Vietnam. Another research purpose was to carry out a video study in Vietnam to find out the characteristics of Vietnamese mathematics teaching and compare these characteristics with those of other countries. In particular, this dissertation carried out the following research tasks: - Studying the characteristics of teaching and learning in different cultures and relating the results to mathematics teaching and learning in Vietnam - Introducing the TIMSS, the TIMSS Video Study and the advantages of using video study in investigating mathematics teaching and learning - Carrying out the video study in Vietnam to identify the image, scripts and patterns, and the lesson signature of eighth-grade mathematics teaching in Vietnam - Comparing some aspects of mathematics teaching in Vietnam and other countries and identifying the similarities and differences across countries - Studying the demands and challenges of innovating mathematics teaching methods in Vietnam – lessons from the video studies Hopefully, this dissertation will be a useful reference material for pre-service teachers at education universities to understand the nature of teaching and develop their teaching career.

We establish in this paper the existence of weak solutions of infinite-dimensional shift invariant stochastic differential equations driven by a Brownian term. The drift function is very general, in the sense that it is supposed to be neither small or continuous, nor Markov. On the initial law we only assume that it admits a finite specific entropy. Our result strongly improves the previous ones obtained for free dynamics with a small perturbative drift. The originality of our method leads in the use of the specific entropy as a tightness tool and on a description of such stochastic differential equation as solution of a variational problem on the path space.

In this thesis we consider diverse aspects of existence and correctness of asymptotic solutions to elliptic differential and pseudodifferential equations. We begin our studies with the case of a general elliptic boundary value problem in partial derivatives. A small parameter enters the coefficients of the main equation as well as into the boundary conditions. Such equations have already been investigated satisfactory, but there still exist certain theoretical deficiencies. Our aim is to present the general theory of elliptic problems with a small parameter. For this purpose we examine in detail the case of a bounded domain with a smooth boundary. First of all, we construct formal solutions as power series in the small parameter. Then we examine their asymptotic properties. It suffices to carry out sharp two-sided \emph{a priori} estimates for the operators of boundary value problems which are uniform in the small parameter. Such estimates failed to hold in functional spaces used in classical elliptic theory. To circumvent this limitation we exploit norms depending on the small parameter for the functions defined on a bounded domain. Similar norms are widely used in literature, but their properties have not been investigated extensively. Our theoretical investigation shows that the usual elliptic technique can be correctly carried out in these norms. The obtained results also allow one to extend the norms to compact manifolds with boundaries. We complete our investigation by formulating algebraic conditions on the operators and showing their equivalence to the existence of a priori estimates. In the second step, we extend the concept of ellipticity with a small parameter to more general classes of operators. Firstly, we want to compare the difference in asymptotic patterns between the obtained series and expansions for similar differential problems. Therefore we investigate the heat equation in a bounded domain with a small parameter near the time derivative. In this case the characteristics touch the boundary at a finite number of points. It is known that the solutions are not regular in a neighbourhood of such points in advance. We suppose moreover that the boundary at such points can be non-smooth but have cuspidal singularities. We find a formal asymptotic expansion and show that when a set of parameters comes through a threshold value, the expansions fail to be asymptotic. The last part of the work is devoted to general concept of ellipticity with a small parameter. Several theoretical extensions to pseudodifferential operators have already been suggested in previous studies. As a new contribution we involve the analysis on manifolds with edge singularities which allows us to consider wider classes of perturbed elliptic operators. We examine that introduced classes possess a priori estimates of elliptic type. As a further application we demonstrate how developed tools can be used to reduce singularly perturbed problems to regular ones.

These lecture notes are intended as a short introduction to diffusion processes on a domain with a reflecting boundary for graduate students, researchers in stochastic analysis and interested readers. Specific results on stochastic differential equations with reflecting boundaries such as existence and uniqueness, continuity and Markov properties, relation to partial differential equations and submartingale problems are given. An extensive list of references to current literature is included. This book has its origins in a mini-course the author gave at the University of Potsdam and at the Technical University of Berlin in Winter 2013.

The zero-noise limit of differential equations with singular coefficients is investigated for the first time in the case when the noise is a general alpha-stable process. It is proved that extremal solutions are selected and the probability of selection is computed. Detailed analysis of the characteristic function of an exit time form on the half-line is performed, with a suitable decomposition in small and large jumps adapted to the singular drift.

This work is devoted to the convergence analysis of a modified Runge-Kutta-type iterative regularization method for solving nonlinear ill-posed problems under a priori and a posteriori stopping rules. The convergence rate results of the proposed method can be obtained under Hölder-type source-wise condition if the Fréchet derivative is properly scaled and locally Lipschitz continuous. Numerical results are achieved by using the Levenberg-Marquardt and Radau methods.

Processes having the same bridges as a given reference Markov process constitute its reciprocal class. In this paper we study the reciprocal class of compound Poisson processes whose jumps belong to a finite set A in R^d. We propose a characterization of the reciprocal class as the unique set of probability measures on which a family of time and space transformations induces the same density, expressed in terms of the reciprocal invariants. The geometry of A plays a crucial role in the design of the transformations, and we use tools from discrete geometry to obtain an optimal characterization. We deduce explicit conditions for two Markov jump processes to belong to the same class. Finally, we provide a natural interpretation of the invariants as short-time asymptotics for the probability that the reference process makes a cycle around its current state.

We consider a general class of finite dimensional deterministic dynamical systems with finitely many local attractors each of which supports a unique ergodic probability measure, which includes in particular the class of Morse–Smale systems in any finite dimension. The dynamical system is perturbed by a multiplicative non-Gaussian heavytailed Lévy type noise of small intensity ε > 0. Specifically we consider perturbations leading to a Itô, Stratonovich and canonical (Marcus) stochastic differential equation. The respective asymptotic first exit time and location problem from each of the domains of attractions in case of inward pointing vector fields in the limit of ε-> 0 has been investigated by the authors. We extend these results to domains with characteristic boundaries and show that the perturbed system exhibits a metastable behavior in the sense that there exits a unique ε-dependent time scale on which the random system converges to a continuous time Markov chain switching between the invariant measures. As examples we consider α-stable perturbations of the Duffing equation and a chemical system exhibiting a birhythmic behavior.

The paper is devoted to asymptotic analysis of the Dirichlet problem for a second order partial differential equation containing a small parameter multiplying the highest order derivatives. It corresponds to a small perturbation of a dynamical system having a stationary solution in the domain. We focus on the case where the trajectories of the system go into the domain and the stationary solution is a proper node.