### Refine

#### Year of publication

- 2014 (33) (remove)

#### Document Type

- Article (33) (remove)

#### Language

- English (33) (remove)

#### Keywords

- Earthquake interaction (2)
- Statistical seismology (2)
- 35J70 (1)
- 47A52 (1)
- 47G30 (1)
- 58J40 (1)
- 65R20 (1)
- 65R32 (1)
- 78A46 (1)
- Algorithmic (1)

#### Institute

- Institut fĂĽr Mathematik (33) (remove)

We investigate spatio-temporal properties of earthquake patterns in the San Jacinto fault zone (SJFZ), California, between Cajon Pass and the Superstition Hill Fault, using a long record of simulated seismicity constrained by available seismological and geological data. The model provides an effective realization of a large segmented strike-slip fault zone in a 3D elastic half-space, with heterogeneous distribution of static friction chosen to represent several clear step-overs at the surface. The simulated synthetic catalog reproduces well the basic statistical features of the instrumental seismicity recorded at the SJFZ area since 1981. The model also produces events larger than those included in the short instrumental record, consistent with paleo-earthquakes documented at sites along the SJFZ for the last 1,400 years. The general agreement between the synthetic and observed data allows us to address with the long-simulated seismicity questions related to large earthquakes and expected seismic hazard. The interaction between m a parts per thousand yen 7 events on different sections of the SJFZ is found to be close to random. The hazard associated with m a parts per thousand yen 7 events on the SJFZ increases significantly if the long record of simulated seismicity is taken into account. The model simulations indicate that the recent increased number of observed intermediate SJFZ earthquakes is a robust statistical feature heralding the occurrence of m a parts per thousand yen 7 earthquakes. The hypocenters of the m a parts per thousand yen 5 events in the simulation results move progressively towards the hypocenter of the upcoming m a parts per thousand yen 7 earthquake.

Two recent works have adapted the Kalman-Bucy filter into an ensemble setting. In the first formulation, the ensemble of perturbations is updated by the solution of an ordinary differential equation (ODE) in pseudo-time, while the mean is updated as in the standard Kalman filter. In the second formulation, the full ensemble is updated in the analysis step as the solution of single set of ODEs in pseudo-time. Neither requires matrix inversions except for the frequently diagonal observation error covariance.
We analyse the behaviour of the ODEs involved in these formulations. We demonstrate that they stiffen for large magnitudes of the ratio of background error to observational error variance, and that using the integration scheme proposed in both formulations can lead to failure. A numerical integration scheme that is both stable and is not computationally expensive is proposed. We develop transform-based alternatives for these Bucy-type approaches so that the integrations are computed in ensemble space where the variables are weights (of dimension equal to the ensemble size) rather than model variables.
Finally, the performance of our ensemble transform Kalman-Bucy implementations is evaluated using three models: the 3-variable Lorenz 1963 model, the 40-variable Lorenz 1996 model, and a medium complexity atmospheric general circulation model known as SPEEDY. The results from all three models are encouraging and warrant further exploration of these assimilation techniques.

The inverse problem of determining the flow at the Earth's core-mantle boundary according to an outer core magnetic field and secular variation model has been investigated through a Bayesian formalism. To circumvent the issue arising from the truncated nature of the available fields, we combined two modeling methods. In the first step, we applied a filter on the magnetic field to isolate its large scales by reducing the energy contained in its small scales, we then derived the dynamical equation, referred as filtered frozen flux equation, describing the spatiotemporal evolution of the filtered part of the field. In the second step, we proposed a statistical parametrization of the filtered magnetic field in order to account for both its remaining unresolved scales and its large-scale uncertainties. These two modeling techniques were then included in the Bayesian formulation of the inverse problem. To explore the complex posterior distribution of the velocity field resulting from this development, we numerically implemented an algorithm based on Markov chain Monte Carlo methods. After evaluating our approach on synthetic data and comparing it to previously introduced methods, we applied it to a magnetic field model derived from satellite data for the single epoch 2005.0. We could confirm the existence of specific features already observed in previous studies. In particular, we retrieved the planetary scale eccentric gyre characteristic of flow evaluated under the compressible quasi-geostrophy assumption although this hypothesis was not considered in our study. In addition, through the sampling of the velocity field posterior distribution, we could evaluate the reliability, at any spatial location and at any scale, of the flow we calculated. The flow uncertainties we determined are nevertheless conditioned by the choice of the prior constraints we applied to the velocity field.

In a recent paper, the Lefschetz number for endomorphisms (modulo trace class operators) of sequences of trace class curvature was introduced. We show that this is a well defined, canonical extension of the classical Lefschetz number and establish the homotopy invariance of this number. Moreover, we apply the results to show that the Lefschetz fixed point formula holds for geometric quasiendomorphisms of elliptic quasicomplexes.

We establish a quantisation of corner-degenerate symbols, here called Mellin-edge quantisation, on a manifold with second order singularities. The typical ingredients come from the "most singular" stratum of which is a second order edge where the infinite transversal cone has a base that is itself a manifold with smooth edge. The resulting operator-valued amplitude functions on the second order edge are formulated purely in terms of Mellin symbols taking values in the edge algebra over . In this respect our result is formally analogous to a quantisation rule of (Osaka J. Math. 37:221-260, 2000) for the simpler case of edge-degenerate symbols that corresponds to the singularity order 1. However, from the singularity order 2 on there appear new substantial difficulties for the first time, partly caused by the edge singularities of the cone over that tend to infinity.

We discuss the solution theory of operators of the form del(x) + A, acting on smooth sections of a vector bundle with connection del over a manifold M, where X is a vector field having a critical point with positive linearization at some point p is an element of M. As an operator on a suitable space of smooth sections Gamma(infinity)(U, nu), it fulfills a Fredholm alternative, and the same is true for the adjoint operator. Furthermore, we show that the solutions depend smoothly on the data del, X and A.

We introduce the concept of a conical zeta value as a geometric generalization of a multiple zeta value in the context of convex cones. The quasi-shuffle and shuffle relations of multiple zeta values are generalized to open cone subdivision and closed cone subdivision relations respectively for conical zeta values. In order to achieve the closed cone subdivision relation, we also interpret linear relations among fractions as subdivisions of decorated closed cones. As a generalization of the double shuffle relation of multiple zeta values, we give the double subdivision relation of conical zeta values and formulate the extended double subdivision relation conjecture for conical zeta values.