### Refine

#### Year of publication

- 2014 (4) (remove)

#### Language

- English (4) (remove)

#### Keywords

- non-Markov drift (2)
- Girsanov formula (1)
- Infinite-dimensional SDE (1)
- bridge (1)
- cluster expansion (1)
- compound Poisson processes (1)
- counting process (1)
- duality formula (1)
- infinite-dimensional diffusion (1)
- jump processes (1)

#### Institute

- Institut für Mathematik (4) (remove)

We consider infinite-dimensional diffusions where the interaction between the coordinates has a finite extent both in space and time. In particular, it is not supposed to be smooth or Markov. The initial state of the system is Gibbs, given by a strong summable interaction. If the strongness of this initial interaction is lower than a suitable level, and if the dynamical interaction is bounded from above in a right way, we prove that the law of the diffusion at any time t is a Gibbs measure with absolutely summable interaction. The main tool is a cluster expansion in space uniformly in time of the Girsanov factor coming from the dynamics and exponential ergodicity of the free dynamics to an equilibrium product measure.

We establish in this paper the existence of weak solutions of infinite-dimensional shift invariant stochastic differential equations driven by a Brownian term. The drift function is very general, in the sense that it is supposed to be neither small or continuous, nor Markov. On the initial law we only assume that it admits a finite specific entropy. Our result strongly improves the previous ones obtained for free dynamics with a small perturbative drift. The originality of our method leads in the use of the specific entropy as a tightness tool and on a description of such stochastic differential equation as solution of a variational problem on the path space.

Processes having the same bridges as a given reference Markov process constitute its reciprocal class. In this paper we study the reciprocal class of compound Poisson processes whose jumps belong to a finite set A in R^d. We propose a characterization of the reciprocal class as the unique set of probability measures on which a family of time and space transformations induces the same density, expressed in terms of the reciprocal invariants. The geometry of A plays a crucial role in the design of the transformations, and we use tools from discrete geometry to obtain an optimal characterization. We deduce explicit conditions for two Markov jump processes to belong to the same class. Finally, we provide a natural interpretation of the invariants as short-time asymptotics for the probability that the reference process makes a cycle around its current state.