### Refine

#### Year of publication

- 2014 (3) (remove)

#### Language

- English (3) (remove)

#### Keywords

- Morse-Smale property (1)
- Peano phenomena (1)
- empirical Wasserstein distance (1)
- goodness-of-fit (1)
- hyperbolic dynamical system (1)
- index of stability (1)
- multiplicative noise (1)
- non-uniqueness (1)
- singular drifts (1)
- small noise asymptotic (1)

#### Institute

- Institut für Mathematik (3) (remove)

The zero-noise limit of differential equations with singular coefficients is investigated for the first time in the case when the noise is a general alpha-stable process. It is proved that extremal solutions are selected and the probability of selection is computed. Detailed analysis of the characteristic function of an exit time form on the half-line is performed, with a suitable decomposition in small and large jumps adapted to the singular drift.

We consider a general class of finite dimensional deterministic dynamical systems with finitely many local attractors each of which supports a unique ergodic probability measure, which includes in particular the class of Morse–Smale systems in any finite dimension. The dynamical system is perturbed by a multiplicative non-Gaussian heavytailed Lévy type noise of small intensity ε > 0. Specifically we consider perturbations leading to a Itô, Stratonovich and canonical (Marcus) stochastic differential equation. The respective asymptotic first exit time and location problem from each of the domains of attractions in case of inward pointing vector fields in the limit of ε-> 0 has been investigated by the authors. We extend these results to domains with characteristic boundaries and show that the perturbed system exhibits a metastable behavior in the sense that there exits a unique ε-dependent time scale on which the random system converges to a continuous time Markov chain switching between the invariant measures. As examples we consider α-stable perturbations of the Duffing equation and a chemical system exhibiting a birhythmic behavior.

This article aims at the statistical assessment of time series with large fluctuations in short time, which are assumed to stem from a continuous process perturbed by a Lévy process exhibiting a heavy tail behavior. We propose an easily implementable procedure to estimate efficiently the statistical difference between the noisy behavior of the data and a given reference jump measure in terms of so-called coupling distances. After a short introduction to Lévy processes and coupling distances we recall basic statistical approximation results and derive rates of convergence. In the sequel the procedure is elaborated in detail in an abstract setting and eventually applied in a case study to simulated and paleoclimate data. It indicates the dominant presence of a non-stable heavy-tailed jump Lévy component for some tail index greater than 2.