### Refine

#### Year of publication

#### Document Type

- Preprint (88)
- Article (31)
- Monograph/Edited Volume (27)

#### Language

- English (146) (remove)

#### Keywords

- index (8)
- manifolds with singularities (6)
- Fredholm property (5)
- Toeplitz operators (5)
- pseudodifferential operators (4)
- 'eta' invariant (3)
- Cauchy problem (3)
- Dirichlet to Neumann operator (3)
- Hodge theory (3)
- boundary value problems (3)

In a bounded domain with smooth boundary in R^3 we consider the stationary Maxwell equations
for a function u with values in R^3 subject to a nonhomogeneous condition
(u,v)_x = u_0 on
the boundary, where v is a given vector field and u_0 a function on the boundary. We specify this problem within the framework of the Riemann-Hilbert boundary value problems for the Moisil-Teodorescu system. This latter is proved to satisfy the Shapiro-Lopaniskij condition if an only if the vector v is at no point tangent to the boundary. The Riemann-Hilbert problem for the Moisil-Teodorescu system fails to possess an adjoint boundary value problem with respect to the Green formula, which satisfies the Shapiro-Lopatinskij condition. We develop the construction of Green formula to get a proper concept of adjoint boundary value problem.

We find necessary conditions for a second order ordinary differential equation to be equivalent to the Painleve III equation under a general point transformation. Their sufficiency is established by reduction to known results for the equations of the form y ' = f (x, y). We consider separately the generic case and the case of reducibility to an autonomous equation. The results are illustrated by the primary resonance equation.

Asymptotic Solutions of the Dirichlet Problem for the Heat Equation at a Characteristic Point
(2015)

The Dirichlet problem for the heat equation in a bounded domain aS, a"e (n+1) is characteristic because there are boundary points at which the boundary touches a characteristic hyperplane t = c, where c is a constant. For the first time, necessary and sufficient conditions on the boundary guaranteeing that the solution is continuous up to the characteristic point were established by Petrovskii (1934) under the assumption that the Dirichlet data are continuous. The appearance of Petrovskii's paper was stimulated by the existing interest to the investigation of general boundary-value problems for parabolic equations in bounded domains. We contribute to the study of this problem by finding a formal solution of the Dirichlet problem for the heat equation in a neighborhood of a cuspidal characteristic boundary point and analyzing its asymptotic behavior.

We investigate nonlinear problems which appear as Euler-Lagrange equations for a variational problem. They include in particular variational boundary value problems for nonlinear elliptic equations studied by F. Browder in the 1960s. We establish a solvability criterion of such problems and elaborate an efficient orthogonal projection method for constructing approximate solutions.

The subject of this paper is solutions of an autoresonance equation. We look for a connection between the parameters of the solution bounded as t -> -infinity, and the parameters of two two-parameter families of solutions as t -> infinity. One family consists of the solutions which are not captured into resonance, and another of those increasing solutions which are captured into resonance. In this way we describe the transition through the separatrix for equations with slowly varying parameters and get an estimate for parameters before the resonance of those solutions which may be captured into autoresonance. (C) 2014 AIP Publishing LLC.