### Refine

#### Year of publication

#### Document Type

- Article (2712)
- Doctoral Thesis (584)
- Monograph/Edited Volume (116)
- Postprint (50)
- Preprint (46)
- Habilitation (20)
- Review (15)
- Conference Proceeding (14)
- Other (14)
- Master's Thesis (9)

#### Keywords

- stars: early-type (22)
- gamma rays: galaxies (21)
- X-rays: stars (19)
- gamma rays: general (19)
- quasars: absorption lines (18)
- radiation mechanisms: non-thermal (18)
- anomalous diffusion (17)
- stars: massive (17)
- ISM: supernova remnants (15)
- Magellanic Clouds (15)

#### Institute

- Institut für Physik und Astronomie (3580) (remove)

The goal of this thesis is related to the question how to introduce and combine simultaneously plasmonic and photoswitching properties to different nano-objects. In this thesis I investigate the complexes between noble metal nanoparticles and cationic surfactants containing azobenzene units in their hydrophobic tail, employing absorption spectroscopy, surface zeta-potential, and electron microscopy.
In the first part of the thesis, the formation of complexes between negatively charged laser ablated spherical gold nanoparticles and cationic azobenzene surfactants in trans- conformation is explored. It is shown that the constitution of the complexes strongly depends on a surfactant-to-gold molar ratio. At certain molar ratios, particle self-assembly into nanochains and their aggregation have been registered. At higher surfactant concentrations, the surface charge of nanoparticles turned positive, attributed to the formation of the stabilizing double layer of azobenzene surfactants on gold nanoparticle surfaces. These gold-surfactant complexes remained colloidally stable. UV light induced trans-cis isomerization of azobenzene surfactant molecules and thus perturbed the stabilizing surfactant shell, causing nanoparticle aggregation. The results obtained with silver and silicon nanoparticles mimick those for the comprehensively studied gold nanoparticles, corroborating the proposed model of complex formation.
In the second part, the interaction between plasmonic metal nanoparticles (Au, Ag, Pd, alloy Au-Ag, Au-Pd), as well as silicon nanoparticles, and cis-isomers of azobenzene containing compounds is addressed. Cis-trans thermal isomerization of azobenzenes was enhanced in the presence of gold, palladium, and alloy gold-palladium nanoparticles. The influence of the surfactant structure and nanoparticle material on the azobenzene isomerization rate is expounded. Gold nanoparticles showed superior catalytic activity for thermal cis-trans isomerization of azobenzenes. In a joint project with theoretical chemists, we demonstrated that the possible physical origin of this phenomenon is the electron transfer between azobenzene moieties and nanoparticle surfaces.
In the third part, complexes between gold nanorods and azobenzene surfactants with different tail length were exposed to UV and blue light, inducing trans-cis and cis-trans isomerization of surfactant, respectively. At the same time, the position of longitudinal plasmonic absorption maximum of gold nanorods experienced reversible shift responding to the changes in local dielectric environment. Surface plasmon resonance condition allowed the estimation of the refractive index of azobenzene containing surfactants in solution.

Fixational eye movements show scaling behaviour of the positional mean-squared displacement with a characteristic transition from persistence to antipersistence for increasing time-lag. These statistical patterns were found to be mainly shaped by microsaccades (fast, small-amplitude movements). However, our re-analysis of fixational eye-movement data provides evidence that the slow component (physiological drift) of the eyes exhibits scaling behaviour of the mean-squared displacement that varies across human participants. These results suggest that drift is a correlated movement that interacts with microsaccades. Moreover, on the long time scale, the mean-squared displacement of the drift shows oscillations, which is also present in the displacement auto-correlation function. This finding lends support to the presence of time-delayed feedback in the control of drift movements. Based on an earlier non-linear delayed feedback model of fixational eye movements, we propose and discuss different versions of a new model that combines a self-avoiding walk with time delay. As a result, we identify a model that reproduces oscillatory correlation functions, the transition from persistence to antipersistence, and microsaccades.

Effects of the target aspect ratio and intrinsic reactivity onto diffusive search in bounded domains
(2017)

We study the mean first passage time (MFPT) to a reaction event on a specific site in a cylindrical geometry—characteristic, for instance, for bacterial cells, with a concentric inner cylinder representing the nuclear region of the bacterial cell. Asimilar problem emerges in the description of a diffusive search by a transcription factor protein for a specific binding region on a single strand of DNA.We develop a unified theoretical approach to study the underlying boundary value problem which is based on a self-consistent approximation of the mixed boundary condition. Our approach permits us to derive explicit, novel, closed-form expressions for the MFPT valid for a generic setting with an arbitrary relation between the system parameters.Weanalyse this general result in the asymptotic limits appropriate for the above-mentioned biophysical problems. Our investigation reveals the crucial role of the target aspect ratio and of the intrinsic reactivity of the binding region, which were disregarded in previous studies. Theoretical predictions are confirmed by numerical simulations.

Effects of the target aspect ratio and intrinsic reactivity onto diffusive search in bounded domains
(2017)

Westudy the mean first passage time (MFPT) to a reaction event on a specific site in a cylindrical geometry—characteristic, for instance, for bacterial cells, with a concentric inner cylinder representing the nuclear region of the bacterial cell. Asimilar problem emerges in the description of a diffusive search by a transcription factor protein for a specific binding region on a single strand of DNA.We develop a unified theoretical approach to study the underlying boundary value problem which is based on a self-consistent approximation of the mixed boundary condition. Our approach permits us to derive explicit, novel, closed-form expressions for the MFPT valid for a generic setting with an arbitrary relation between the system parameters.Weanalyse this general result in the asymptotic limits appropriate for the above-mentioned biophysical problems. Our investigation reveals the crucial role of the target aspect ratio and of the intrinsic reactivity of the binding region, which were disregarded in previous studies. Theoretical predictions are confirmed by numerical simulations.

In the current paradigm of cosmology, the formation of large-scale structures is mainly driven by non-radiating dark matter, making up the dominant part of the matter budget of the Universe. Cosmological observations however, rely on the detection of luminous galaxies, which are biased tracers of the underlying dark matter. In this thesis I present cosmological reconstructions of both, the dark matter density field that forms the cosmic web, and cosmic velocities, for which both aspects of my work are delved into, the theoretical formalism and the results of its applications to cosmological simulations and also to a galaxy redshift survey.The foundation of our method is relying on a statistical approach, in which a given galaxy catalogue is interpreted as a biased realization of the underlying dark matter density field. The inference is computationally performed on a mesh grid by sampling from a probability density function, which describes the joint posterior distribution of matter density and the three dimensional velocity field. The statistical background of our method is described in Chapter ”Implementation of argo”, where the introduction in sampling methods is given, paying special attention to Markov Chain Monte-Carlo techniques. In Chapter ”Phase-Space Reconstructions with N-body Simulations”, I introduce and implement a novel biasing scheme to relate the galaxy number density to the underlying dark matter, which I decompose into a deterministic part, described by a non-linear and scale-dependent analytic expression, and a stochastic part, by presenting a negative binomial (NB) likelihood function that models deviations from Poissonity. Both bias components had already been studied theoretically, but were so far never tested in a reconstruction algorithm. I test these new contributions againstN-body simulations to quantify improvements and show that, compared to state-of-the-art methods, the stochastic bias is inevitable at wave numbers of k≥0.15h Mpc^−1 in the power spectrum in order to obtain unbiased results from the reconstructions. In the second part of Chapter ”Phase-Space Reconstructions with N-body Simulations” I describe and validate our approach to infer the three dimensional cosmic velocity field jointly with the dark matter density. I use linear perturbation theory for the large-scale bulk flows and a dispersion term to model virialized galaxy motions, showing that our method is accurately recovering the real-space positions of the redshift-space distorted galaxies. I analyze the results with the isotropic and also the two-dimensional power spectrum.Finally, in Chapter ”Phase-space Reconstructions with Galaxy Redshift Surveys”, I show how I combine all findings and results and apply the method to the CMASS (for Constant (stellar) Mass) galaxy catalogue of the Baryon Oscillation Spectroscopic Survey (BOSS). I describe how our method is accounting for the observational selection effects inside our reconstruction algorithm. Also, I demonstrate that the renormalization of the prior distribution function is mandatory to account for higher order contributions in the structure formation model, and finally a redshift-dependent bias factor is theoretically motivated and implemented into our method. The various refinements yield unbiased results of the dark matter until scales of k≤0.2 h Mpc^−1in the power spectrum and isotropize the galaxy catalogue down to distances of r∼20h^−1 Mpc in the correlation function. We further test the results of our cosmic velocity field reconstruction by comparing them to a synthetic mock galaxy catalogue, finding a strong correlation between the mock and the reconstructed velocities. The applications of both, the density field without redshift-space distortions, and the velocity reconstructions, are very broad and can be used for improved analyses of the baryonic acoustic oscillations, environmental studies of the cosmic web, the kinematic Sunyaev-Zel’dovic or integrated Sachs-Wolfe effect.

Despite the ongoing progress in nanotechnology and its applications, the development of strategies for connecting nano-scale systems to micro- or macroscale elements is hampered by the lack of structural components that have both, nano- and macroscale dimensions. The production of nano-scale wires with macroscale length is one of the most interesting challenges here. There are a lot of strategies to fabricate long nanoscopic stripes made of metals, polymers or ceramics but none is suitable for mass production of ordered and dense arrangements of wires at large numbers. In this paper, we report on a technique for producing arrays of ordered, flexible and free-standing polymer nano-wires filled with different types of nano-particles. The process utilizes the strong response of photosensitive polymer brushes to irradiation with UV-interference patterns, resulting in a substantial mass redistribution of the polymer material along with local rupturing of polymer chains. The chains can wind up in wires of nano-scale thickness and a length of up to several centimeters. When dispersing nano-particles within the film, the final arrangement is similar to a core-shell geometry with mainly nano-particles found in the core region and the polymer forming a dielectric jacket.