### Refine

#### Year of publication

#### Document Type

- Article (794)
- Monograph/Edited Volume (425)
- Preprint (378)
- Doctoral Thesis (131)
- Other (36)
- Postprint (24)
- Review (12)
- Conference Proceeding (7)
- Part of a Book (3)
- Master's Thesis (2)

#### Language

- English (1551)
- German (250)
- French (7)
- Italien (3)
- Multiple languages (1)

#### Keywords

- index (13)
- boundary value problems (12)
- Fredholm property (10)
- cluster expansion (9)
- elliptic operators (9)
- K-theory (7)
- manifolds with singularities (7)
- pseudodifferential operators (7)
- Cauchy problem (6)
- Toeplitz operators (6)

#### Institute

- Institut für Mathematik (1812) (remove)

We study mixed boundary value problems for an elliptic operator A on a manifold X with boundary Y, i.e., Au = f in int X, T (+/-) u = g(+/-) on int Y+/-, where Y is subdivided into subsets Y+/- with an interface Z and boundary conditions T+/- on Y+/- that are Shapiro-Lopatinskij elliptic up to Z from the respective sides. We assume that Z subset of Y is a manifold with conical singularity v. As an example we consider the Zaremba problem, where A is the Laplacian and T- Dirichlet, T+ Neumann conditions. The problem is treated as a corner boundary value problem near v which is the new point and the main difficulty in this paper. Outside v the problem belongs to the edge calculus as is shown in Bull. Sci. Math. ( to appear). With a mixed problem we associate Fredholm operators in weighted corner Sobolev spaces with double weights, under suitable edge conditions along Z {v} of trace and potential type. We construct parametrices within the calculus and establish the regularity of solutions.

Background Evolution of metastatic melanoma (MM) under B-RAF inhibitors (BRAFi) is unpredictable, but anticipation is crucial for therapeutic decision. Kinetics changes in metastatic growth are driven by molecular and immune events, and thus we hypothesized that they convey relevant information for decision making. Patients and methods We used a retrospective cohort of 37 MM patients treated by BRAFi only with at least 2 close CT-scans available before BRAFi, as a model to study kinetics of metastatic growth before, under and after BRAFi. All metastases (mets) were individually measured at each CT-scan. From these measurements, different measures of growth kinetics of each met and total tumor volume were computed at different time points. A historical cohort permitted to build a reference model for the expected spontaneous disease kinetics without BRAFi. All variables were included in Cox and multistate regression models for survival, to select best candidates for predicting overall survival. Results Before starting BRAFi, fast kinetics and moreover a wide range of kinetics (fast and slow growing mets in a same patient) were pejorative markers. At the first assessment after BRAFi introduction, high heterogeneity of kinetics predicted short survival, and added independent information over RECIST progression in multivariate analysis. Metastatic growth rates after BRAFi discontinuation was usually not faster than before BRAFi introduction, but they were often more heterogeneous than before. Conclusions Monitoring kinetics of different mets before and under BRAFi by repeated CT-scan provides information for predictive mathematical modelling. Disease kinetics deserves more interest

Assimilation of pseudo-tree-ring-width observations into an atmospheric general circulation model
(2017)

Paleoclimate data assimilation (DA) is a promising technique to systematically combine the information from climate model simulations and proxy records. Here, we investigate the assimilation of tree-ring-width (TRW) chronologies into an atmospheric global climate model using ensemble Kalman filter (EnKF) techniques and a process-based tree-growth forward model as an observation operator. Our results, within a perfect-model experiment setting, indicate that the "online DA" approach did not outperform the "off-line" one, despite its considerable additional implementation complexity. On the other hand, it was observed that the nonlinear response of tree growth to surface temperature and soil moisture does deteriorate the operation of the time-averaged EnKF methodology. Moreover, for the first time we show that this skill loss appears significantly sensitive to the structure of the growth rate function, used to represent the principle of limiting factors (PLF) within the forward model. In general, our experiments showed that the error reduction achieved by assimilating pseudo-TRW chronologies is modulated by the magnitude of the yearly internal variability in themodel. This result might help the dendrochronology community to optimize their sampling efforts.

Maximal subsemigroups of some semigroups of order-preserving mappings on a countably infinite set
(2017)

In this paper, we study the maximal subsemigroups of several semigroups of order-preserving transformations on the natural numbers and the integers, respectively. We determine all maximal subsemigroups of the monoid of all order-preserving injections on the set of natural numbers as well as on the set of integers. Further, we give all maximal subsemigroups of the monoid of all bijections on the integers. For the monoid of all order-preserving transformations on the natural numbers, we classify also all its maximal subsemigroups, containing a particular set of transformations.

This article presents a new and easily implementable method to quantify the so-called coupling distance between the law of a time series and the law of a differential equation driven by Markovian additive jump noise with heavy-tailed jumps, such as a-stable Levy flights. Coupling distances measure the proximity of the empirical law of the tails of the jump increments and a given power law distribution. In particular, they yield an upper bound for the distance of the respective laws on path space. We prove rates of convergence comparable to the rates of the central limit theorem which are confirmed by numerical simulations. Our method applied to a paleoclimate time series of glacial climate variability confirms its heavy tail behavior. In addition, this approach gives evidence for heavy tails in datasets of precipitable water vapor of the Western Tropical Pacific. Published by AIP Publishing.

Abelian duality is realized naturally by combining differential cohomology and locally covariant quantum field theory. This leads to a -algebra of observables, which encompasses the simultaneous discretization of both magnetic and electric fluxes. We discuss the assignment of physically well-behaved states on this algebra and the properties of the associated GNS triple. We show that the algebra of observables factorizes as a suitable tensor product of three -algebras: the first factor encodes dynamical information, while the other two capture topological data corresponding to electric and magnetic fluxes. On the former factor and in the case of ultra-static globally hyperbolic spacetimes with compact Cauchy surfaces, we exhibit a state whose two-point correlation function has the same singular structure of a Hadamard state. Specifying suitable counterparts also on the topological factors, we obtain a state for the full theory, ultimately implementing Abelian duality transformations as Hilbert space isomorphisms.

Prospective and retrospective evaluation of five-year earthquake forecast models for California
(2017)

Background: Cells are able to communicate and coordinate their function within tissues via secreted factors. Aberrant secretion by cancer cells can modulate this intercellular communication, in particular in highly organised tissues such as the liver. Hepatocytes, the major cell type of the liver, secrete Dickkopf (Dkk), which inhibits Wnt/beta-catenin signalling in an autocrine and paracrine manner. Consequently, Dkk modulates the expression of Wnt/beta-catenin target genes. We present a mathematical model that describes the autocrine and paracrine regulation of hepatic gene expression by Dkk under wild-type conditions as well as in the presence of mutant cells. Results: Our spatial model describes the competition of Dkk and Wnt at receptor level, intra-cellular Wnt/beta-catenin signalling, and the regulation of target gene expression for 21 individual hepatocytes. Autocrine and paracrine regulation is mediated through a feedback mechanism via Dkk and Dkk diffusion along the porto-central axis. Along this axis an APC concentration gradient is modelled as experimentally detected in liver. Simulations of mutant cells demonstrate that already a single mutant cell increases overall Dkk concentration. The influence of the mutant cell on gene expression of surrounding wild-type hepatocytes is limited in magnitude and restricted to hepatocytes in close proximity. To explore the underlying molecular mechanisms, we perform a comprehensive analysis of the model parameters such as diffusion coefficient, mutation strength and feedback strength. Conclusions: Our simulations show that Dkk concentration is elevated in the presence of a mutant cell. However, the impact of these elevated Dkk levels on wild-type hepatocytes is confined in space and magnitude. The combination of inter-and intracellular processes, such as Dkk feedback, diffusion and Wnt/beta-catenin signal transduction, allow wild-type hepatocytes to largely maintain their gene expression.