### Refine

#### Has Fulltext

- yes (9) (remove)

#### Year of publication

- 2012 (9) (remove)

#### Is part of the Bibliography

- yes (9) (remove)

#### Keywords

Asymptotic solutions of the Dirichlet problem for the heat equation at a characteristic point
(2012)

The Dirichlet problem for the heat equation in a bounded domain is characteristic, for there are boundary points at which the boundary touches a characteristic hyperplane t = c, c being a constant. It was I.G. Petrovskii (1934) who first found necessary and sufficient conditions on the boundary which guarantee that the solution is continuous up to the characteristic point, provided that the Dirichlet data are continuous. This paper initiated standing interest in studying general boundary value problems for parabolic equations in bounded domains. We contribute to the study by constructing a formal solution of the Dirichlet problem for the heat equation in a neighbourhood of a characteristic boundary point and showing its asymptotic character.

We develop the method of Fischer-Riesz equations for general boundary value problems elliptic in the sense of Douglis-Nirenberg. To this end we reduce them to a boundary problem for a (possibly overdetermined) first order system whose classical symbol has a left inverse. For such a problem there is a uniquely determined boundary value problem which is adjoint to the given one with respect to the Green formula. On using a well elaborated theory of approximation by solutions of the adjoint problem, we find the Cauchy data of solutions of our problem.

We study the Dirichlet problem in a bounded plane domain for the heat equation with small parameter multiplying the derivative in t. The behaviour of solution at characteristic points of the boundary is of special interest. The behaviour is well understood if a characteristic line is tangent to the boundary with contact degree at least 2. We allow the boundary to not only have contact of degree less than 2 with a characteristic line but also a cuspidal singularity at a characteristic point. We construct an asymptotic solution of the problem near the characteristic point to describe how the boundary layer degenerates.

The Riemann hypothesis is equivalent to the fact the the reciprocal function 1/zeta (s) extends from the interval (1/2,1) to an analytic function in the quarter-strip 1/2 < Re s < 1 and Im s > 0. Function theory allows one to rewrite the condition of analytic continuability in an elegant form amenable to numerical experiments.

On completeness of root functions of Sturm-Liouville problems with discontinuous boundary operators
(2012)

We consider a Sturm-Liouville boundary value problem in a bounded domain D of R^n. By this is meant that the differential equation is given by a second order elliptic operator of divergent form in D and the boundary conditions are of Robin type on bD. The first order term of the boundary operator is the oblique derivative whose coefficients bear discontinuities of the first kind. Applying the method of weak perturbation of compact self-adjoint operators and the method of rays of minimal growth, we prove the completeness of root functions related to the boundary value problem in Lebesgue and Sobolev spaces of various types.

We consider the Dirichlet, Neumann and Zaremba problems for harmonic functions in a bounded plane domain with nonsmooth boundary. The boundary curve belongs to one of the following three classes: sectorial curves, logarithmic spirals and spirals of power type. To study the problem we apply a familiar method of Vekua-Muskhelishvili which consists in using a conformal mapping of the unit disk onto the domain to pull back the problem to a boundary problem for harmonic functions in the disk. This latter is reduced in turn to a Toeplitz operator equation on the unit circle with symbol bearing discontinuities of second kind. We develop a constructive invertibility theory for Toeplitz operators and thus derive solvability conditions as well as explicit formulas for solutions.

For a sequence of Hilbert spaces and continuous linear operators the curvature is defined to be the composition of any two consecutive operators. This is modeled on the de Rham resolution of a connection on a module over an algebra. Of particular interest are those sequences for which the curvature is "small" at each step, e.g., belongs to a fixed operator ideal. In this context we elaborate the theory of Fredholm sequences and show how to introduce the Lefschetz number.