We consider the Dirichlet, Neumann and Zaremba problems for harmonic functions in a bounded plane domain with nonsmooth boundary. The boundary curve belongs to one of the following three classes: sectorial curves, logarithmic spirals and spirals of power type. To study the problem we apply a familiar method of Vekua-Muskhelishvili which consists in using a conformal mapping of the unit disk onto the domain to pull back the problem to a boundary problem for harmonic functions in the disk. This latter is reduced in turn to a Toeplitz operator equation on the unit circle with symbol bearing discontinuities of second kind. We develop a constructive invertibility theory for Toeplitz operators and thus derive solvability conditions as well as explicit formulas for solutions.

We give a brief survey on some new developments on elliptic operators on manifolds with polyhedral singularities. The material essentially corresponds to a talk given by the author during the Conference “Elliptic and Hyperbolic Equations on Singular Spaces”, October 27 - 31, 2008, at the MSRI, University of Berkeley.

We study elliptic boundary value problems in a wedge with additional edge conditions of trace and potential type. We compute the (difference of the) number of such conditions in terms of the Fredholm index of the principal edge symbol. The task will be reduced to the case of special opening angles, together with a homotopy argument.

We prove a theorem describing the behaviour of the relative index of families of Fredholm operators under surgery performed on spaces where the operators act. In connection with additional conditions (like symmetry conditions) this theorem results in index formulas for given operator families. By way of an example, we give an application to index theory of families of boundary value problems.

We prove a general theorem on the local property of the relative index for a wide class of Fredholm operators, including relative index theorems for elliptic operators due to Gromov-Lawson, Anghel, Teleman, Booß-Bavnbek-Wojciechowski, et al. as special cases. In conjunction with additional conditions (like symmetry conditions) this theorem permits one to compute the analytical index of a given operator. In particular, we obtain new index formulas for elliptic pseudodifferential operators and quantized canonical transformations on manifolds with conical singularities as well as for elliptic boundary value problems with a symmetry condition for the conormal symbol.

An elliptic theory is constructed for operators acting in subspaces defined via even pseudodifferential projections. Index formulas are obtained for operators on compact manifolds without boundary and for general boundary value problems. A connection with Gilkey's theory of η-invariants is established.

The paper is devoted to pseudodifferential boundary value problems in domains with cuspidal wedges. Concerning the geometry we even admit a more general behaviour, namely oscillating cuspidal wedges. We show a criterion for the Fredholm property of a boundary value problem and derive estimates of solutions close to edges.

The paper is devoted to pseudodifferential boundary value problems in domains with singular points on the boundary. The tangent cone at a singular point is allowed to degenerate. In particular, the boundary may rotate and oscillate in a neighbourhood of such a point. We show a criterion for the Fredholm property of a boundary value problem and derive estimates of solutions close to singular points.