### Refine

#### Year of publication

#### Document Type

- Doctoral Thesis (101) (remove)

#### Language

- English (101) (remove)

#### Keywords

- Tunneleffekt (2)
- Vietnam (2)
- reziproke Klassen (2)
- (sub-) tropical Africa (1)
- (sub-) tropisches Afrika (1)
- 4-Mannigfaltigkeiten (1)
- Aerosole (1)
- Alternatividentitäten (1)
- Alternativvarietäten (1)
- Alterung (1)

#### Institute

- Institut für Mathematik (101) (remove)

One method of embedding groups into skew fields was introduced by A. I. Mal'tsev and B. H. Neumann (cf. [18, 19]). If G is an ordered group and F is a skew field, the set F((G)) of formal power series over F in G with well-ordered support forms a skew field into which the group ring F[G] can be embedded. Unfortunately it is not suficient that G is left-ordered since F((G)) is only an F-vector space in this case as there is no natural way to define a multiplication on F((G)). One way to extend the original idea onto left-ordered groups is to examine the endomorphism ring of F((G)) as explored by N. I. Dubrovin (cf. [5, 6]). It is possible to embed any crossed product ring F[G; η, σ] into the endomorphism ring of F((G)) such that each non-zero element of F[G; η, σ] defines an automorphism of F((G)) (cf. [5, 10]). Thus, the rational closure of F[G; η, σ] in the endomorphism ring of F((G)), which we will call the Dubrovin-ring of F[G; η, σ], is a potential candidate for a skew field of fractions of F[G; η, σ]. The methods of N. I. Dubrovin allowed to show that specific classes of groups can be embedded into a skew field. For example, N. I. Dubrovin contrived some special criteria, which are applicable on the universal covering group of SL(2, R). These methods have also been explored by J. Gräter and R. P. Sperner (cf. [10]) as well as N.H. Halimi and T. Ito (cf. [11]). Furthermore, it is of interest to know if skew fields of fractions are unique. For example, left and right Ore domains have unique skew fields of fractions (cf. [2]). This is not the general case as for example the free group with 2 generators can be embedded into non-isomorphic skew fields of fractions (cf. [12]). It seems likely that Ore domains are the most general case for which unique skew fields of fractions exist. One approach to gain uniqueness is to restrict the search to skew fields of fractions with additional properties. I. Hughes has defined skew fields of fractions of crossed product rings F[G; η, σ] with locally indicable G which fulfill a special condition. These are called Hughes-free skew fields of fractions and I. Hughes has proven that they are unique if they exist [13, 14]. This thesis will connect the ideas of N. I. Dubrovin and I. Hughes. The first chapter contains the basic terminology and concepts used in this thesis. We present methods provided by N. I. Dubrovin such as the complexity of elements in rational closures and special properties of endomorphisms of the vector space of formal power series F((G)). To combine the ideas of N.I. Dubrovin and I. Hughes we introduce Conradian left-ordered groups of maximal rank and examine their connection to locally indicable groups. Furthermore we provide notations for crossed product rings, skew fields of fractions as well as Dubrovin-rings and prove some technical statements which are used in later parts. The second chapter focuses on Hughes-free skew fields of fractions and their connection to Dubrovin-rings. For that purpose we introduce series representations to interpret elements of Hughes-free skew fields of fractions as skew formal Laurent series. This 1 Introduction allows us to prove that for Conradian left-ordered groups G of maximal rank the statement "F[G; η, σ] has a Hughes-free skew field of fractions" implies "The Dubrovin ring of F [G; η, σ] is a skew field". We will also prove the reverse and apply the results to give a new prove of Theorem 1 in [13]. Furthermore we will show how to extend injective ring homomorphisms of some crossed product rings onto their Hughes-free skew fields of fractions. At last we will be able to answer the open question whether Hughes--free skew fields are strongly Hughes-free (cf. [17, page 53]).

In this thesis, we discuss the characterization of orthogroups by so-called disjunctions of identities. The orthogroups are a subclass of the class of completely regular semigroups, a generalization of the concept of a group. Thus there is for all elements of an orthogroup some kind of an inverse element such that both elements commute. Based on a fundamental result by A.H. Clifford, every completely regular semigroup is a semilattice of completely simple semigroups. This allows the description the gross structure of such semigroup. In particular every orthogroup is a semilattice of rectangular groups which are isomorphic to direct products of rectangular bands and groups. Semilattices of rectangular groups coming from various classes are characterized using the concept of an alternative variety, a generalization of the classical idea of a variety by Birkhoff.
After starting with some fundamental definitions and results concerning semigroups, we introduce the concept of disjunctions of identities and summarize some necessary properties. In particular we present some disjunction of identities which is sufficient for a semigroup for being completely regular. Furthermore we derive from this identity some statements concerning Rees matrix semigroups, a possible representation of completely simple semigroups. A main result of this thesis is the general description of disjunctions of identities such that a completely regular semigroup satisfying the described identity is a semilattice of left groups (right groups / groups). In this case the completely regular semigroup is an orthogroup. Furthermore we define various classes of rectangular groups such that there is an exponent taken from a set of pairwise coprime positive integers. An important result is the characterization of the class of all semilattices of particular rectangular groups (taken from the classes defined before) using a set-theoretic minimal set of disjunctions of identities. Additionally we investigate semilattices of groups (so-called Clifford semigroups). For this purpose we consider abelian groups of particular exponents and prove some well-known results from the theory of Clifford semigroups in an alternative way applying the concept of disjunctions of identities. As a practical application of the results concerning semilattices of left zero semigroups and right zero semigroups we identify a particular transformation semigroup. For more detailed information about the product of two arbitrary elements of a semilattice of semigroups we introduce the concept of strong semilattices of semigroups. It is well-known that a semilattice of groups is a strong semilattice of groups. So we can characterize a strong semilattice of groups of particular pairwise coprime exponents by disjunctions of identities. Additionally we describe the class of all strong semilattices of left zero semigroups and right zero semigroups with the help of such kind of identity, and we relate this statement to the theory of normal bands. A possible extension of the already described semilattices of rectangular groups can be achieved by an auxiliary total order (in terms of chains of semigroups). To this end we present a corresponding characterization due to disjunctions of identities which is obviously minimal. A list of open questions which have arisen during the research for this thesis, but left crude, is attached.

In the thesis there are constructed new quantizations for pseudo-differential boundary value problems (BVPs) on manifolds with edge. The shape of operators comes from Boutet de Monvel’s calculus which exists on smooth manifolds with boundary. The singular case, here with edge and boundary, is much more complicated. The present approach simplifies the operator-valued symbolic structures by using suitable Mellin quantizations on infinite stretched model cones of wedges with boundary. The Mellin symbols themselves are, modulo smoothing ones, with asymptotics, holomorphic in the complex Mellin covariable. One of the main results is the construction of parametrices of elliptic elements in the corresponding operator algebra, including elliptic edge conditions.

The Cauchy problem for the linearised Einstein equation and the Goursat problem for wave equations
(2017)

In this thesis, we study two initial value problems arising in general relativity. The first is the Cauchy problem for the linearised Einstein equation on general globally hyperbolic spacetimes, with smooth and distributional initial data. We extend well-known results by showing that given a solution to the linearised constraint equations of arbitrary real Sobolev regularity, there is a globally defined solution, which is unique up to addition of gauge solutions. Two solutions are considered equivalent if they differ by a gauge solution. Our main result is that the equivalence class of solutions depends continuously on the corre- sponding equivalence class of initial data. We also solve the linearised constraint equations in certain cases and show that there exist arbitrarily irregular (non-gauge) solutions to the linearised Einstein equation on Minkowski spacetime and Kasner spacetime.
In the second part, we study the Goursat problem (the characteristic Cauchy problem) for wave equations. We specify initial data on a smooth compact Cauchy horizon, which is a lightlike hypersurface. This problem has not been studied much, since it is an initial value problem on a non-globally hyperbolic spacetime. Our main result is that given a smooth function on a non-empty, smooth, compact, totally geodesic and non-degenerate Cauchy horizon and a so called admissible linear wave equation, there exists a unique solution that is defined on the globally hyperbolic region and restricts to the given function on the Cauchy horizon. Moreover, the solution depends continuously on the initial data. A linear wave equation is called admissible if the first order part satisfies a certain condition on the Cauchy horizon, for example if it vanishes. Interestingly, both existence of solution and uniqueness are false for general wave equations, as examples show. If we drop the non-degeneracy assumption, examples show that existence of solution fails even for the simplest wave equation. The proof requires precise energy estimates for the wave equation close to the Cauchy horizon. In case the Ricci curvature vanishes on the Cauchy horizon, we show that the energy estimates are strong enough to prove local existence and uniqueness for a class of non-linear wave equations. Our results apply in particular to the Taub-NUT spacetime and the Misner spacetime. It has recently been shown that compact Cauchy horizons in spacetimes satisfying the null energy condition are necessarily smooth and totally geodesic. Our results therefore apply if the spacetime satisfies the null energy condition and the Cauchy horizon is compact and non-degenerate.

The first main goal of this thesis is to develop a concept of approximate differentiability of higher order for subsets of the Euclidean space that allows to characterize higher order rectifiable sets, extending somehow well known facts for functions. We emphasize that for every subset A of the Euclidean space and for every integer k ≥ 2 we introduce the approximate differential of order k of A and we prove it is a Borel map whose domain is a (possibly empty) Borel set. This concept could be helpful to deal with higher order rectifiable sets in applications.
The other goal is to extend to general closed sets a well known theorem of Alberti on the second order rectifiability properties of the boundary of convex bodies. The Alberti theorem provides a stratification of second order rectifiable subsets of the boundary of a convex body based on the dimension of the (convex) normal cone. Considering a suitable generalization of this normal cone for general closed subsets of the Euclidean space and employing some results from the first part we can prove that the same stratification exists for every closed set.

In this thesis, stochastic dynamics modelling collective motions of populations, one of the most mysterious type of biological phenomena, are considered. For a system of N particle-like individuals, two kinds of asymptotic behaviours are studied : ergodicity and flocking properties, in long time, and propagation of chaos, when the number N of agents goes to infinity. Cucker and Smale, deterministic, mean-field kinetic model for a population without a hierarchical structure is the starting point of our journey : the first two chapters are dedicated to the understanding of various stochastic dynamics it inspires, with random noise added in different ways. The third chapter, an attempt to improve those results, is built upon the cluster expansion method, a technique from statistical mechanics. Exponential ergodicity is obtained for a class of non-Markovian process with non-regular drift. In the final part, the focus shifts onto a stochastic system of interacting particles derived from Keller and Segel 2-D parabolicelliptic model for chemotaxis. Existence and weak uniqueness are proven.

We analyze an inverse noisy regression model under random design with the aim of estimating the unknown target function based on a given set of data, drawn according to some unknown probability distribution. Our estimators are all constructed by kernel methods, which depend on a Reproducing Kernel Hilbert Space structure using spectral regularization methods.
A first main result establishes upper and lower bounds for the rate of convergence under a given source condition assumption, restricting the class of admissible distributions. But since kernel methods scale poorly when massive datasets are involved, we study one example for saving computation time and memory requirements in more detail. We show that Parallelizing spectral algorithms also leads to minimax optimal rates of convergence provided the number of machines is chosen appropriately.
We emphasize that so far all estimators depend on the assumed a-priori smoothness of the target function and on the eigenvalue decay of the kernel covariance operator, which are in general unknown. To obtain good purely data driven estimators constitutes the problem of adaptivity which we handle for the single machine problem via a version of the Lepskii principle.

The classical Navier-Stokes equations of hydrodynamics are usually written in terms of vector analysis. More promising is the formulation of these equations in the language of differential forms of degree one. In this way the study of Navier-Stokes equations includes the analysis of the de Rham complex. In particular, the Hodge theory for the de Rham complex enables one to eliminate the pressure from the equations. The Navier-Stokes equations constitute a parabolic system with a nonlinear term which makes sense only for one-forms. A simpler model of dynamics of incompressible viscous fluid is given by Burgers' equation. This work is aimed at the study of invariant structure of the Navier-Stokes equations which is closely related to the algebraic structure of the de Rham complex at step 1. To this end we introduce Navier-Stokes equations related to any elliptic quasicomplex of first order differential operators. These equations are quite similar to the classical Navier-Stokes equations including generalised velocity and pressure vectors. Elimination of the pressure from the generalised Navier-Stokes equations gives a good motivation for the study of the Neumann problem after Spencer for elliptic quasicomplexes. Such a study is also included in the work.We start this work by discussion of Lamé equations within the context of elliptic quasicomplexes on compact manifolds with boundary. The non-stationary Lamé equations form a hyperbolic system. However, the study of the first mixed problem for them gives a good experience to attack the linearised Navier-Stokes equations. On this base we describe a class of non-linear perturbations of the Navier-Stokes equations, for which the solvability results still hold.

During the drug discovery & development process, several phases encompassing a number of preclinical and clinical studies have to be successfully passed to demonstrate safety and efficacy of a new drug candidate. As part of these studies, the characterization of the drug's pharmacokinetics (PK) is an important aspect, since the PK is assumed to strongly impact safety and efficacy. To this end, drug concentrations are measured repeatedly over time in a study population. The objectives of such studies are to describe the typical PK time-course and the associated variability between subjects. Furthermore, underlying sources significantly contributing to this variability, e.g. the use of comedication, should be identified. The most commonly used statistical framework to analyse repeated measurement data is the nonlinear mixed effect (NLME) approach. At the same time, ample knowledge about the drug's properties already exists and has been accumulating during the discovery & development process: Before any drug is tested in humans, detailed knowledge about the PK in different animal species has to be collected. This drug-specific knowledge and general knowledge about the species' physiology is exploited in mechanistic physiological based PK (PBPK) modeling approaches -it is, however, ignored in the classical NLME modeling approach.
Mechanistic physiological based models aim to incorporate relevant and known physiological processes which contribute to the overlying process of interest. In comparison to data--driven models they are usually more complex from a mathematical perspective. For example, in many situations, the number of model parameters outrange the number of measurements and thus reliable parameter estimation becomes more complex and partly impossible. As a consequence, the integration of powerful mathematical estimation approaches like the NLME modeling approach -which is widely used in data-driven modeling -and the mechanistic modeling approach is not well established; the observed data is rather used as a confirming instead of a model informing and building input.
Another aggravating circumstance of an integrated approach is the inaccessibility to the details of the NLME methodology so that these approaches can be adapted to the specifics and needs of mechanistic modeling. Despite the fact that the NLME modeling approach exists for several decades, details of the mathematical methodology is scattered around a wide range of literature and a comprehensive, rigorous derivation is lacking. Available literature usually only covers selected parts of the mathematical methodology. Sometimes, important steps are not described or are only heuristically motivated, e.g. the iterative algorithm to finally determine the parameter estimates.
Thus, in the present thesis the mathematical methodology of NLME modeling is systemically described and complemented to a comprehensive description,
comprising the common theme from ideas and motivation to the final parameter estimation. Therein, new insights for the interpretation of different approximation methods used in the context of the NLME modeling approach are given and illustrated; furthermore, similarities and differences between them are outlined. Based on these findings, an expectation-maximization (EM) algorithm to determine estimates of a NLME model is described.
Using the EM algorithm and the lumping methodology by Pilari2010, a new approach on how PBPK and NLME modeling can be combined is presented and exemplified for the antibiotic levofloxacin. Therein, the lumping identifies which processes are informed by the available data and the respective model reduction improves the robustness in parameter estimation. Furthermore, it is shown how apriori known factors influencing the variability and apriori known unexplained variability is incorporated to further mechanistically drive the model development. Concludingly, correlation between parameters and between covariates is automatically accounted for due to the mechanistic derivation of the lumping and the covariate relationships.
A useful feature of PBPK models compared to classical data-driven PK models is in the possibility to predict drug concentration within all organs and tissue in the body. Thus, the resulting PBPK model for levofloxacin is used to predict drug concentrations and their variability within soft tissues which are the site of action for levofloxacin. These predictions are compared with data of muscle and adipose tissue obtained by microdialysis, which is an invasive technique to measure a proportion of drug in the tissue, allowing to approximate the concentrations in the interstitial fluid of tissues. Because, so far, comparing human in vivo tissue PK and PBPK predictions are not established, a new conceptual framework is derived. The comparison of PBPK model predictions and microdialysis measurements shows an adequate agreement and reveals further strengths of the presented new approach.
We demonstrated how mechanistic PBPK models, which are usually developed in the early stage of drug development, can be used as basis for model building in the analysis of later stages, i.e. in clinical studies. As a consequence, the extensively collected and accumulated knowledge about species and drug are utilized and updated with specific volunteer or patient data. The NLME approach combined with mechanistic modeling reveals new insights for the mechanistic model, for example identification and quantification of variability in mechanistic processes. This represents a further contribution to the learn & confirm paradigm across different stages of drug development.
Finally, the applicability of mechanism--driven model development is demonstrated on an example from the field of Quantitative Psycholinguistics to analyse repeated eye movement data. Our approach gives new insight into the interpretation of these experiments and the processes behind.

Numerous reports of relatively rapid climate changes over the past century make a clear case of the impact of aerosols and clouds, identified as sources of largest uncertainty in climate projections. Earth’s radiation balance is altered by aerosols depending on their size, morphology and chemical composition. Competing effects in the atmosphere can be further studied by investigating the evolution of aerosol microphysical properties, which are the focus of the present work.
The aerosol size distribution, the refractive index, and the single scattering albedo are commonly used such properties linked to aerosol type, and radiative forcing. Highly advanced lidars (light detection and ranging) have reduced aerosol monitoring and optical profiling into a routine process. Lidar data have been widely used to retrieve the size distribution through the inversion of the so-called Lorenz-Mie model (LMM). This model offers a reasonable treatment for spherically approximated particles, it no longer provides, though, a viable description for other naturally occurring arbitrarily shaped particles, such as dust particles. On the other hand, non-spherical geometries as simple as spheroids reproduce certain optical properties with enhanced accuracy. Motivated by this, we adapt the LMM to accommodate the spheroid-particle approximation introducing the notion of a two-dimensional (2D) shape-size distribution.
Inverting only a few optical data points to retrieve the shape-size distribution is classified as a non-linear ill-posed problem. A brief mathematical analysis is presented which reveals the inherent tendency towards highly oscillatory solutions, explores the available options for a generalized solution through regularization methods and quantifies the ill-posedness. The latter will improve our understanding on the main cause fomenting instability in the produced solution spaces. The new approach facilitates the exploitation of additional lidar data points from depolarization measurements, associated with particle non-sphericity. However, the generalization of LMM vastly increases the complexity of the problem. The underlying theory for the calculation of the involved optical cross sections (T-matrix theory) is computationally so costly, that would limit a retrieval analysis to an unpractical point. Moreover the discretization of the model equation by a 2D collocation method, proposed in this work, involves double integrations which are further time consuming. We overcome these difficulties by using precalculated databases and a sophisticated retrieval software (SphInX: Spheroidal Inversion eXperiments) especially developed for our purposes, capable of performing multiple-dataset inversions and producing a wide range of microphysical retrieval outputs.
Hybrid regularization in conjunction with minimization processes is used as a basis for our algorithms. Synthetic data retrievals are performed simulating various atmospheric scenarios in order to test the efficiency of different regularization methods. The gap in contemporary literature in providing full sets of uncertainties in a wide variety of numerical instances is of major concern here. For this, the most appropriate methods are identified through a thorough analysis on an overall-behavior basis regarding accuracy and stability. The general trend of the initial size distributions is captured in our numerical experiments and the reconstruction quality depends on data error level. Moreover, the need for more or less depolarization points is explored for the first time from the point of view of the microphysical retrieval. Finally, our approach is tested in various measurement cases giving further insight for future algorithm improvements.

On Particular n-Clones
(2013)

Weak Hypersubstitutions
(2002)