Refine
Year of publication
Document Type
- Article (15411)
- Doctoral Thesis (2529)
- Postprint (1818)
- Monograph/Edited Volume (1138)
- Preprint (528)
- Review (459)
- Conference Proceeding (357)
- Other (278)
- Working Paper (114)
- Part of a Book (96)
Language
- English (22876) (remove)
Keywords
- climate change (97)
- diffusion (53)
- morphology (53)
- Germany (46)
- Holocene (45)
- anomalous diffusion (45)
- German (44)
- eye movements (42)
- Climate change (41)
- Arabidopsis thaliana (40)
Institute
- Institut für Physik und Astronomie (3933)
- Institut für Biochemie und Biologie (3576)
- Institut für Geowissenschaften (2457)
- Institut für Chemie (2295)
- Institut für Mathematik (1619)
- Department Psychologie (1082)
- Institut für Ernährungswissenschaft (754)
- Department Linguistik (753)
- Institut für Informatik und Computational Science (738)
- Wirtschaftswissenschaften (708)
Define real, Moron!
(2011)
Academic language should not be a ghetto dialect at odds with ordinary language, but rather an extension that is compatible with lay-language. To define ‘game’ with the unrealistic ambition of satisfying both lay-people and experts should not be a major concern for a game ontology, since the field it addresses is subject to cultural evolution and diachronic change. Instead of the impossible mission of turning the common word into an analytic concept, a useful task for an ontology of games is to model game differences, to show how the things we call games can be different from each other in a number of different ways.
The talk will focus on a few central problems in Game Studies: The question of where to locate game meaning, game defintions and how to avoid them, and the conundrum of games vs stories. In all these problems, the choice of ludic perspective (e.g. are games artifacts, systems or activities?) limits our ability to discuss games across disciplinary boundaries. What is needed is a metaperspective that will offer the field a chance to move on.
Reproducibility is a defining feature of science, but the extent to which it characterizes current research is unknown. We conducted replications of 100 experimental and correlational studies published in three psychology journals using high-powered designs and original materials when available. Replication effects were half the magnitude of original effects, representing a substantial decline. Ninety-seven percent of original studies had statistically significant results. Thirty-six percent of replications had statistically significant results; 47% of original effect sizes were in the 95% confidence interval of the replication effect size; 39% of effects were subjectively rated to have replicated the original result; and if no bias in original results is assumed, combining original and replication results left 68% with statistically significant effects. Correlational tests suggest that replication success was better predicted by the strength of original evidence than by characteristics of the original and replication teams.
Hepcidin-25 was identified as themain iron regulator in the human body, and it by binds to the sole iron-exporter ferroportin. Studies showed that the N-terminus of hepcidin is responsible for this interaction, the same N-terminus that encompasses a small copper(II) binding site known as the ATCUN (amino-terminal Cu(II)- and Ni(II)-binding) motif. Interestingly, this copper-binding property is largely ignored in most papers dealing with hepcidin-25. In this context, detailed investigations of the complex formed between hepcidin-25 and copper could reveal insight into its biological role. The present work focuses on metal-bound hepcidin-25 that can be considered the biologically active form. The first part is devoted to the reversed-phase chromatographic separation of copper-bound and copper-free hepcidin-25 achieved by applying basic mobile phases containing 0.1% ammonia. Further, mass spectrometry (tandemmass spectrometry (MS/MS), high-resolutionmass spectrometry (HRMS)) and nuclear magnetic resonance (NMR) spectroscopy were employed to characterize the copper-peptide. Lastly, a three-dimensional (3D)model of hepcidin-25with bound copper(II) is presented. The identification of metal complexes and potential isoforms and isomers, from which the latter usually are left undetected by mass spectrometry, led to the conclusion that complementary analytical methods are needed to characterize a peptide calibrant or referencematerial comprehensively. Quantitative nuclear magnetic resonance (qNMR), inductively-coupled plasma mass spectrometry (ICP-MS), ion-mobility spectrometry (IMS) and chiral amino acid analysis (AAA) should be considered among others.
Hepcidin-25 was identified as themain iron regulator in the human body, and it by binds to the sole iron-exporter ferroportin. Studies showed that the N-terminus of hepcidin is responsible for this interaction, the same N-terminus that encompasses a small copper(II) binding site known as the ATCUN (amino-terminal Cu(II)- and Ni(II)-binding) motif. Interestingly, this copper-binding property is largely ignored in most papers dealing with hepcidin-25. In this context, detailed investigations of the complex formed between hepcidin-25 and copper could reveal insight into its biological role. The present work focuses on metal-bound hepcidin-25 that can be considered the biologically active form. The first part is devoted to the reversed-phase chromatographic separation of copper-bound and copper-free hepcidin-25 achieved by applying basic mobile phases containing 0.1% ammonia. Further, mass spectrometry (tandemmass spectrometry (MS/MS), high-resolutionmass spectrometry (HRMS)) and nuclear magnetic resonance (NMR) spectroscopy were employed to characterize the copper-peptide. Lastly, a three-dimensional (3D)model of hepcidin-25with bound copper(II) is presented. The identification of metal complexes and potential isoforms and isomers, from which the latter usually are left undetected by mass spectrometry, led to the conclusion that complementary analytical methods are needed to characterize a peptide calibrant or referencematerial comprehensively. Quantitative nuclear magnetic resonance (qNMR), inductively-coupled plasma mass spectrometry (ICP-MS), ion-mobility spectrometry (IMS) and chiral amino acid analysis (AAA) should be considered among others.
An Exploration of Rhythmic Grouping of Speech Sequences by French- and German-Learning Infants
(2016)
Rhythm in music and speech can be characterized by a constellation of several acoustic cues. Individually, these cues have different effects on rhythmic perception: sequences of sounds alternating in duration are perceived as short-long pairs (weak-strong/iambic pattern), whereas sequences of sounds alternating in intensity or pitch are perceived as loud-soft, or high-low pairs (strong-weak/trochaic pattern). This perceptual bias—called the Iambic-Trochaic Law (ITL)–has been claimed to be an universal property of the auditory system applying in both the music and the language domains. Recent studies have shown that language experience can modulate the effects of the ITL on rhythmic perception of both speech and non-speech sequences in adults, and of non-speech sequences in 7.5-month-old infants. The goal of the present study was to explore whether language experience also modulates infants’ grouping of speech. To do so, we presented sequences of syllables to monolingual French- and German-learning 7.5-month-olds. Using the Headturn Preference Procedure (HPP), we examined whether they were able to perceive a rhythmic structure in sequences of syllables that alternated in duration, pitch, or intensity. Our findings show that both French- and German-learning infants perceived a rhythmic structure when it was cued by duration or pitch but not intensity. Our findings also show differences in how these infants use duration and pitch cues to group syllable sequences, suggesting that pitch cues were the easier ones to use. Moreover, performance did not differ across languages, failing to reveal early language effects on rhythmic perception. These results contribute to our understanding of the origin of rhythmic perception and perceptual mechanisms shared across music and speech, which may bootstrap language acquisition.
An exploration of rhythmic grouping of speech sequences by french- and german-learning infants
(2016)
Rhythm in music and speech can be characterized by a constellation of several acoustic cues. Individually, these cues have different effects on rhythmic perception: sequences of sounds alternating in duration are perceived as short-long pairs (weak-strong/iambicpattern), whereas sequences of sounds alternating in intensity or pitch are perceived as loud-soft, or high-low pairs (strong-weak/trochaic pattern). This perceptual bias-called the lambic-Trochaic Law (ITL) has been claimed to be an universal property of the auditory system applying in both the music and the language domains. Recent studies have shown that language experience can modulate the effects of the ITL on rhythmic perception of both speech and non-speech sequences in adults, and of non-speech sequences in 7.5-month-old infants. The goal of the present study was to explore whether language experience also modulates infants' grouping of speech. To do so, we presented sequences of syllables to monolingual French- and German-learning 7.5-month-olds. Using the Headturn Preference Procedure (HPP), we examined whether they were able to perceive a rhythmic structure in sequences of syllables that alternated in duration, pitch, or intensity. Our findings show that both French- and German-learning infants perceived a rhythmic structure when it was cued by duration or pitch but not intensity. Our findings also show differences in how these infants use duration and pitch cues to group syllable sequences, suggesting that pitch cues were the easier ones to use. Moreover, performance did not differ across languages, failing to reveal early language effects on rhythmic perception. These results contribute to our understanding of the origin of rhythmic perception and perceptual mechanisms shared across music and speech, which may bootstrap language acquisition.
A new approach to achieve sub-pixel spatial resolution in a pnCCD detector with 75 x 75 mu m(2) pixel size is proposed for X-ray applications in single photon counting mode. The approach considers the energy dependence of the charge cloud created by a single photon and its split probabilities between neighboring pixels of the detector based on a rectangular model for the charge cloud density. For cases where the charge of this cloud becomes distributed over three or four pixels the center position of photon impact can be reconstructed with a precision better than 2 mu m. The predicted charge cloud sizes are tested at selected X-ray fluorescence lines emitting energies between 6.4 keV and 17.4 keV and forming charge clouds with size (rms) varying between 8 mu m and 10 mu m respectively. The 2 mu m enhanced spatial resolution of the pnCCD is verified by means of an x-ray transmission experiment throughout an optical grating.
The flat spectrum radio quasar 3C 279 is known to exhibit pronounced variability in the high-energy (100MeV < E < 100 GeV) gamma-ray band, which is continuously monitored with Fermi-LAT. During two periods of high activity in April 2014 and June 2015 target-of-opportunity observations were undertaken with the High Energy Stereoscopic System (H.E.S.S.) in the very-high-energy (VHE, E > 100 GeV) gamma-ray domain. While the observation in 2014 provides an upper limit, the observation in 2015 results in a signal with 8 : 7 sigma significance above an energy threshold of 66 GeV. No VHE variability was detected during the 2015 observations. The VHE photon spectrum is soft and described by a power-law index of 4.2 +/- 0.3. The H.E.S.S. data along with a detailed and contemporaneous multiwavelength data set provide constraints on the physical parameters of the emission region. The minimum distance of the emission region from the central black hole was estimated using two plausible geometries of the broad-line region and three potential intrinsic spectra. The emission region is confidently placed at r greater than or similar to 1 : 7 X 1017 cm from the black hole, that is beyond the assumed distance of the broad-line region. Time-dependent leptonic and lepto-hadronic one-zone models were used to describe the evolution of the 2015 flare. Neither model can fully reproduce the observations, despite testing various parameter sets. Furthermore, the H.E.S.S. data were used to derive constraints on Lorentz invariance violation given the large redshift of 3C 279.
Young core-collapse supernovae with dense-wind progenitors may be able to accelerate cosmic-ray hadrons beyond the knee of the cosmic-ray spectrum, and this may result in measurable gamma-ray emission. We searched for gamma-ray emission from ten super- novae observed with the High Energy Stereoscopic System (H.E.S.S.) within a year of the supernova event. Nine supernovae were observed serendipitously in the H.E.S.S. data collected between December 2003 and December 2014, with exposure times ranging from 1.4 to 53 h. In addition we observed SN 2016adj as a target of opportunity in February 2016 for 13 h. No significant gamma-ray emission has been detected for any of the objects, and upper limits on the >1 TeV gamma-ray flux of the order of similar to 10(-13) cm(-)(2)s(-1) are established, corresponding to upper limits on the luminosities in the range similar to 2 x 10(39) to similar to 1 x 10(42) erg s(-1). These values are used to place model-dependent constraints on the mass-loss rates of the progenitor stars, implying upper limits between similar to 2 x 10(-5) and similar to 2 x 10(-3) M-circle dot yr(-1) under reasonable assumptions on the particle acceleration parameters.
The blazar Mrk 501 (z = 0.034) was observed at very-high-energy (VHE, E greater than or similar to 100 GeV) gamma-ray wavelengths during a bright flare on the night of 2014 June 23-24 (MJD 56832) with the H.E.S.S. phase-II array of Cherenkov telescopes. Data taken that night by H.E.S.S. at large zenith angle reveal an exceptional number of gamma-ray photons at multi-TeV energies, with rapid flux variability and an energy coverage extending significantly up to 20 TeV. This data set is used to constrain Lorentz invariance violation (LIV) using two independent channels: a temporal approach considers the possibility of an energy dependence in the arrival time of gamma-rays, whereas a spectral approach considers the possibility of modifications to the interaction of VHE gamma-rays with extragalactic background light (EBL) photons. The non-detection of energy-dependent time delays and the non-observation of deviations between the measured spectrum and that of a supposed power-law intrinsic spectrum with standard EBL attenuation are used independently to derive strong constraints on the energy scale of LIV (E-QG) in the subluminal scenario for linear and quadratic perturbations in the dispersion relation of photons. For the case of linear perturbations, the 95% confidence level limits obtained are E-QG,E-1 > 3.6 x 10(17) GeV using the temporal approach and E-QG,E-1 > 2.6 x 10(19) GeV using the spectral approach. For the case of quadratic perturbations, the limits obtained are E-QG,E-2 > 8.5 x 10(10) GeV using the temporal approach and E-QG,E-2 > 7.8 x 10(11) GeV using the spectral approach.
PKS 1830-211 is a known macrolensed quasar located at a redshift of z = 2.5. Its highenergy gamma-ray emission has been detected with the Fermi-Large Area Telescope (LAT) instrument and evidence for lensing was obtained by several authors from its high-energy data. Observations of PKS 1830-211 were taken with the High Energy Stereoscopic System (H.E.S.S.) array of Imaging Atmospheric Cherenkov Telescopes in 2014 August, following a flare alert by the Fermi-LAT Collaboration. The H.E.S.S observations were aimed at detecting a gamma-ray flare delayed by 20-27 d from the alert flare, as expected from observations at other wavelengths. More than 12 h of good-quality data were taken with an analysis threshold of similar to 67 GeV. The significance of a potential signal is computed as a function of the date and the average significance over the whole period. Data are compared to simultaneous observations by Fermi-LAT. No photon excess or significant signal is detected. An upper limit on PKS 1830-211 flux above 67 GeV is computed and compared to the extrapolation of the Fermi-LAT flare spectrum.
Context. We present a detailed view of the pulsar wind nebula (PWN) HESS J1825-137. We aim to constrain the mechanisms dominating the particle transport within the nebula, accounting for its anomalously large size and spectral characteristics. Aims. The nebula was studied using a deep exposure from over 12 years of H.E.S.S. I operation, together with data from H.E.S.S. II that improve the low-energy sensitivity. Enhanced energy-dependent morphological and spatially resolved spectral analyses probe the very high energy (VHE, E > 0.1 TeV) gamma-ray properties of the nebula. Methods. The nebula emission is revealed to extend out to 1.5 degrees from the pulsar, similar to 1.5 times farther than previously seen, making HESS J1825-137, with an intrinsic diameter of similar to 100 pc, potentially the largest gamma-ray PWN currently known. Characterising the strongly energy-dependent morphology of the nebula enables us to constrain the particle transport mechanisms. A dependence of the nebula extent with energy of R proportional to E alpha with alpha = -0.29 +/- 0.04(stat) +/- 0.05(sys) disfavours a pure diffusion scenario for particle transport within the nebula. The total gamma-ray flux of the nebula above 1 TeV is found to be (1.12 +/- 0.03(stat) +/- 0.25(sys)) +/- 10(-11) cm(-2) s(-1), corresponding to similar to 64% of the flux of the Crab nebula. Results. HESS J1825-137 is a PWN with clearly energy-dependent morphology at VHE gamma-ray energies. This source is used as a laboratory to investigate particle transport within intermediate-age PWNe. Based on deep observations of this highly spatially extended PWN, we produce a spectral map of the region that provides insights into the spectral variation within the nebula.
Context. Pulsar wind nebulae (PWNe) represent the most prominent population of Galactic very-high-energy gamma-ray sources and are thought to be an efficient source of leptonic cosmic rays. Vela X is a nearby middle-aged PWN, which shows bright X-ray and TeV gamma-ray emission towards an elongated structure called the cocoon. Aims. Since TeV emission is likely inverse-Compton emission of electrons, predominantly from interactions with the cosmic microwave background, while X-ray emission is synchrotron radiation of the same electrons, we aim to derive the properties of the relativistic particles and of magnetic fields with minimal modelling. Methods. We used data from the Suzaku XIS to derive the spectra from three compact regions in Vela X covering distances from 0.3 to 4 pc from the pulsar along the cocoon. We obtained gamma-ray spectra of the same regions from H.E.S.S. observations and fitted a radiative model to the multi-wavelength spectra. Results. The TeV electron spectra and magnetic field strengths are consistent within the uncertainties for the three regions, with energy densities of the order 10(-12) erg cm(-3). The data indicate the presence of a cutoff in the electron spectrum at energies of similar to 100 TeV and a magnetic field strength of similar to 6 mu G. Constraints on the presence of turbulent magnetic fields are weak. Conclusions. The pressure of TeV electrons and magnetic fields in the cocoon is dynamically negligible, requiring the presence of another dominant pressure component to balance the pulsar wind at the termination shock. Sub-TeV electrons cannot completely account for the missing pressure, which may be provided either by relativistic ions or from mixing of the ejecta with the pulsar wind. The electron spectra are consistent with expectations from transport scenarios dominated either by advection via the reverse shock or by diffusion, but for the latter the role of radiative losses near the termination shock needs to be further investigated in the light of the measured cutoff energies. Constraints on turbulent magnetic fields and the shape of the electron cutoff can be improved by spectral measurements in the energy range greater than or similar to 10 keV.
Measurement of the EBL spectral energy distribution using the VHE gamma-ray spectra of HESS blazars
(2017)
Very high-energy gamma rays (VHE, E greater than or similar to 100 GeV) propagating over cosmological distances can interact with the low-energy photons of the extragalactic background light (EBL) and produce electron-positron pairs. The transparency of the Universe to VHE gamma rays is then directly related to the spectral energy distribution (SED) of the EBL. The observation of features in the VHE energy spectra of extragalactic sources allows the EBL to be measured, which otherwise is very difficult. An EBL model-independent measurement of the EBL SED with the H.E.S.S. array of Cherenkov telescopes is presented. It was obtained by extracting the EBL absorption signal from the reanalysis of high-quality spectra of blazars. From H.E.S.S. data alone the EBL signature is detected at a significance of 9.5 sigma, and the intensity of the EBL obtained in different spectral bands is presented together with the associated gamma-ray horizon.
A search for dark matter linelike signals iss performed in the vicinity of the Galactic Center by the H.E.S.S. experiment on observational data taken in 2014. An unbinned likelihood analysis iss developed to improve the sensitivity to linelike signals. The upgraded analysis along with newer data extend the energy coverage of the previous measurement down to 100 GeV. The 18 h of data collected with the H.E.S.S. array allow one to rule out at 95% C.L. the presence of a 130 GeV line (at l = -1.5 degrees, b = 0 degrees and for a dark matter profile centered at this location) previously reported in Fermi-LAT data. This new analysis overlaps significantly in energy with previous Fermi-LAT and H.E.S.S. results. No significant excess associated with dark matter annihilations was found in the energy range of 100 GeV to 2 TeV and upper limits on the gamma-ray flux and the velocity weighted annihilation cross section are derived adopting an Einasto dark matter halo profile. Expected limits for present and future large statistics H.E.S.S. observations are also given.
We search for high-energy gamma-ray emission from the binary neutron star merger GW170817 with the H.E.S.S. Imaging Air Cherenkov Telescopes. The observations presented here have been obtained starting only 5.3 hr after GW170817. The H.E.S.S. target selection identified regions of high probability to find a counterpart of the gravitational-wave event. The first of these regions contained the counterpart SSS17a that has been identified in the optical range several hours after our observations. We can therefore present the first data obtained by a ground-based pointing instrument on this object. A subsequent monitoring campaign with the H.E.S.S. telescopes extended over several days, covering timescales from 0.22 to 5.2 days and energy ranges between 270 GeV to 8.55 TeV. No significant gamma-ray emission has been found. The derived upper limits on the very-high-energy gamma-ray flux for the first time constrain non-thermal, high-energy emission following the merger of a confirmed binary neutron star system.
The inner region of the Milky Way halo harbors a large amount of dark matter (DM). Given its proximity, it is one of the most promising targets to look for DM. We report on a search for the annihilations of DM particles using gamma-ray observations towards the inner 300 pc of the Milky Way, with the H.E.S.S. array of ground-based Cherenkov telescopes. The analysis is based on a 2D maximum likelihood method using Galactic Center (GC) data accumulated by H.E.S.S. over the last 10 years (2004-2014), and does not show any significant gamma-ray signal above background. Assuming Einasto and Navarro-Frenk-White DM density profiles at the GC, we derive upper limits on the annihilation cross section <sigma nu >. These constraints are the strongest obtained so far in the TeV DM mass range and improve upon previous limits by a factor 5. For the Einasto profile, the constraints reach <sigma nu > values of 6 x 10(-26) cm(3) s(-1) in the W+W- channel for a DM particle mass of 1.5 TeV, and 2 x 10(-26) cm(3) s(-1) in the tau(+)tau(-) channel for a 1 TeV mass. For the first time, ground-based gamma-ray observations have reached sufficient sensitivity to probe <sigma nu > values expected from the thermal relic density for TeV DM particles.
A central insight from psychological studies on human eye movements is that eye movement patterns are highly individually characteristic. They can, therefore, be used as a biometric feature, that is, subjects can be identified based on their eye movements. This thesis introduces new machine learning methods to identify subjects based on their eye movements while viewing arbitrary content. The thesis focuses on probabilistic modeling of the problem, which has yielded the best results in the most recent literature. The thesis studies the problem in three phases by proposing a purely probabilistic, probabilistic deep learning, and probabilistic deep metric learning approach. In the first phase, the thesis studies models that rely on psychological concepts about eye movements. Recent literature illustrates that individual-specific distributions of gaze patterns can be used to accurately identify individuals. In these studies, models were based on a simple parametric family of distributions. Such simple parametric models can be robustly estimated from sparse data, but have limited flexibility to capture the differences between individuals. Therefore, this thesis proposes a semiparametric model of gaze patterns that is flexible yet robust for individual identification. These patterns can be understood as domain knowledge derived from psychological literature. Fixations and saccades are examples of simple gaze patterns. The proposed semiparametric densities are drawn under a Gaussian process prior centered at a simple parametric distribution. Thus, the model will stay close to the parametric class of densities if little data is available, but it can also deviate from this class if enough data is available, increasing the flexibility of the model. The proposed method is evaluated on a large-scale dataset, showing significant improvements over the state-of-the-art. Later, the thesis replaces the model based on gaze patterns derived from psychological concepts with a deep neural network that can learn more informative and complex patterns from raw eye movement data. As previous work has shown that the distribution of these patterns across a sequence is informative, a novel statistical aggregation layer called the quantile layer is introduced. It explicitly fits the distribution of deep patterns learned directly from the raw eye movement data. The proposed deep learning approach is end-to-end learnable, such that the deep model learns to extract informative, short local patterns while the quantile layer learns to approximate the distributions of these patterns. Quantile layers are a generic approach that can converge to standard pooling layers or have a more detailed description of the features being pooled, depending on the problem. The proposed model is evaluated in a large-scale study using the eye movements of subjects viewing arbitrary visual input. The model improves upon the standard pooling layers and other statistical aggregation layers proposed in the literature. It also improves upon the state-of-the-art eye movement biometrics by a wide margin. Finally, for the model to identify any subject — not just the set of subjects it is trained on — a metric learning approach is developed. Metric learning learns a distance function over instances. The metric learning model maps the instances into a metric space, where sequences of the same individual are close, and sequences of different individuals are further apart. This thesis introduces a deep metric learning approach with distributional embeddings. The approach represents sequences as a set of continuous distributions in a metric space; to achieve this, a new loss function based on Wasserstein distances is introduced. The proposed method is evaluated on multiple domains besides eye movement biometrics. This approach outperforms the state of the art in deep metric learning in several domains while also outperforming the state of the art in eye movement biometrics.
Different properties of programs, implemented in Constraint Handling Rules (CHR), have already been investigated. Proving these properties in CHR is fairly simpler than proving them in any type of imperative programming language, which triggered the proposal of a methodology to map imperative programs into equivalent CHR. The equivalence of both programs implies that if a property is satisfied for one, then it is satisfied for the other. The mapping methodology could be put to other beneficial uses. One such use is the automatic generation of global constraints, at an attempt to demonstrate the benefits of having a rule-based implementation for constraint solvers.
Phytochemical investigation of the dichloromethane/methanol (1:1) extract of the roots of Bulbine frutescens led to the isolation of a new xanthone, 8-hydroxy-6-methylxanthone-1-carboxylic acid (1) and a new phenylanthraquinone, 6',8-O-dimethylknipholone (2) along with six known compounds. The structures were elucidated on the basis of NMR and MS spectral data analyses. The structure of compound 1 was confirmed through X-ray crystallography which was then used as a reference to propose the revision of the structures of six seco-anthraquinones into xanthones. The isolated compounds were evaluated for cytotoxicity against human cervix carcinoma KB-3-1 cells with the phenylanthraquinone knipholone being the most active (IC50 = 0.43 mu M). Two semi-synthetic knipholone derivatives, knipholone Mannich base and knipholone-1,3-oxazine, were prepared and tested for cytotoxic activity; both showed moderate activities (IC50 value of 1.89 and 2.50 mu M, respectively). (C) 2014 Phytochemical Society of Europe. Published by Elsevier B.V. All rights reserved.
A new phenylanthrone, named knipholone cyclooxanthrone and a dimeric anthraquinone, 10-methoxy-10,7'-(chrysophanol anthrone)-chrysophanol were isolated from the roots of Kniphofia foliosa together with the rare naphthalene glycoside, dianellin. The structures were determined by NMR and mass spectroscopic techniques. The compounds showed antiplasmodial activities against the chloroquine-resistant (W2) and chloroquine-sensitive (D6) strains of Plasmodium falciparum with 10-methoxy-10,7'-(chrysophanol anthrone)-chrysophanol being the most active with IC50 values of 1.17 +/- 0.12 and 4.07 +/- 1.54 mu g/ml, respectively.
We report on the gamma-ray activity of the blazar Mrk 501 during the first 480 days of Fermi operation. We find that the average Large Area Telescope (LAT) gamma-ray spectrum of Mrk 501 can be well described by a single power-law function with a photon index of 1.78 +/- 0.03. While we observe relatively mild flux variations with the Fermi-LAT (within less than a factor of two), we detect remarkable spectral variability where the hardest observed spectral index within the LAT energy range is 1.52 +/- 0.14, and the softest one is 2.51 +/- 0.20. These unexpected spectral changes do not correlate with the measured flux variations above 0.3 GeV. In this paper, we also present the first results from the 4.5 month long multifrequency campaign (2009 March 15-August 1) on Mrk 501, which included the Very Long Baseline Array (VLBA), Swift, RXTE, MAGIC, and VERITAS, the F-GAMMA, GASP-WEBT, and other collaborations and instruments which provided excellent temporal and energy coverage of the source throughout the entire campaign. The extensive radio to TeV data set from this campaign provides us with the most detailed spectral energy distribution yet collected for this source during its relatively low activity. The average spectral energy distribution of Mrk 501 is well described by the standard one-zone synchrotron self-Compton (SSC) model. In the framework of this model, we find that the dominant emission region is characterized by a size less than or similar to 0.1 pc (comparable within a factor of few to the size of the partially resolved VLBA core at 15-43 GHz), and that the total jet power (similar or equal to 10(44) erg s(-1)) constitutes only a small fraction (similar to 10(-3)) of the Eddington luminosity. The energy distribution of the freshly accelerated radiating electrons required to fit the time-averaged data has a broken power-law form in the energy range 0.3 GeV-10 TeV, with spectral indices 2.2 and 2.7 below and above the break energy of 20 GeV. We argue that such a form is consistent with a scenario in which the bulk of the energy dissipation within the dominant emission zone of Mrk 501 is due to relativistic, proton-mediated shocks. We find that the ultrarelativistic electrons and mildly relativistic protons within the blazar zone, if comparable in number, are in approximate energy equipartition, with their energy dominating the jet magnetic field energy by about two orders of magnitude.
Observations of the young supernova remnant RX J1713.7-3946 with the fermi large area telescope
(2011)
We present observations of the young supernova remnant (SNR) RX J1713.7-3946 with the Fermi Large Area Telescope (LAT). We clearly detect a source positionally coincident with the SNR. The source is extended with a best-fit extension of 0 degrees.55 +/- 0 degrees.04 matching the size of the non-thermal X-ray and TeV gamma-ray emission from the remnant. The positional coincidence and the matching extended emission allow us to identify the LAT source with SNR RX J1713.7-3946. The spectrum of the source can be described by a very hard power law with a photon index of Gamma = 1.5 +/- 0.1 that coincides in normalization with the steeper H. E. S. S.-detected gamma-ray spectrum at higher energies. The broadband gamma-ray emission is consistent with a leptonic origin as the dominant mechanism for the gamma-ray emission.
This paper offers a new theoretical framework for studying the problem of generations and social change in contemporary Iran. It offers a model which is called „articulation of cultural modes“. The paper agrees with Ronald Inglehart that ‘culture’ is now playing a more dominant role in the social formation of current societies, as ‘technology’ once did in the modern era. But it goes one step further by arguing that culture cannot be approached as a holistic concept building on a comprehensive theoretical framework.
Combining the advection-diffusion equation approach with Monte Carlo simulations we study chaperone driven polymer translocation of a stiff polymer through a nanopore. We demonstrate that the probability density function of first passage times across the pore depends solely on the Peclet number, a dimensionless parameter comparing drift strength and diffusivity. Moreover it is shown that the characteristic exponent in the power-law dependence of the translocation time on the chain length, a function of the chaperone-polymer binding energy, the chaperone concentration, and the chain length, is also effectively determined by the Peclet number. We investigate the effect of the chaperone size on the translocation process. In particular, for large chaperone size, the translocation progress and the mean waiting time as function of the reaction coordinate exhibit pronounced sawtooth-shapes. The effects of a heterogeneous polymer sequence on the translocation dynamics is studied in terms of the translocation velocity, the probability distribution for the translocation progress, and the monomer waiting times. (C) 2011 American Institute of Physics.
The 11 July 1889 Chilik earthquake (M-w 8.0-8.3) forms part of a remarkable sequence of large earthquakes in the late nineteenth and early twentieth centuries in the northern Tien Shan. Despite its importance, the source of the 1889 earthquake remains unknown, though the macroseismic epicenter is sited in the Chilik valley, similar to 100 km southeast of Almaty, Kazakhstan (similar to 2 million population). Several short fault segments that have been inferred to have ruptured in 1889 are too short on their own to account for the estimated magnitude. In this paper we perform detailed surveying and trenching of the similar to 30 km long Saty fault, one of the previously inferred sources, and find that it was formed in a single earthquake within the last 700 years, involving surface slip of up to 10 m. The scarp-forming event, likely to be the 1889 earthquake, was the only surface-rupturing event for at least 5000 years and potentially for much longer. From satellite imagery we extend the mapped length of fresh scarps within the 1889 epicentral zone to a total of similar to 175 km, which we also suggest as candidate ruptures from the 1889 earthquake. The 175 km of rupture involves conjugate oblique left-lateral and right-lateral slip on three separate faults, with step overs of several kilometers between them. All three faults were essentially invisible in the Holocene geomorphology prior to the last slip. The recurrence interval between large earthquakes on any of these faults, and presumably on other faults of the Tien Shan, may be longer than the timescale over which the landscape is reset, providing a challenge for delineating sources of future hazard.
Background There is scant information on the breastmilk vitamin A (BMVA) concentration of lactating women in developing countries, partly due to lack of methods applicable in-field. Objective To assess BMVA concentrations of samples collected from lactating women of children aged 6-23 months, in Mecha district, Ethiopia. Subjects/methods Data on socio-demographic and anthropometric characteristics were collected from randomly selected lactating women (n = 104). Breast milk samples were collected and vitamin A concentrations were analyzed using HPLC and iCheck FLUORO then the two measurements were compared. Results The prevalence of underweight (BMI < 18.5 kg/m(2)) among lactating women was 17%. Seventy six percent of the BMVA values were < 1.05 mu mol/l and 81% were < 8 mu g/g fat. The mean BMVA concentration accounted to 41% of the estimated average value for mothers in developing countries. The BMVA values from HPLC and iCheck were correlated (r = 0.59, p = < 0.001), but it was not strong. Conclusions The result indicates the low vitamin A status of the lactating women and their children. It further indicates that intake assessments should not use average BMVA composition. The possibility of using iCheck for monitoring interventions designed to improve vitamin A status of lactating women with low BMVA requires further investigation.
We establish elements of a new approach to ellipticity and parametrices within operator algebras on manifolds with higher singularities, only based on some general axiomatic requirements on parameter-dependent operators in suitable scales of spaes. The idea is to model an iterative process with new generations of parameter-dependent operator theories, together with new scales of spaces that satisfy analogous requirements as the original ones, now on a corresponding higher level. The "full" calculus involves two separate theories, one near the tip of the corner and another one at the conical exit to infinity. However, concerning the conical exit to infinity, we establish here a new concrete calculus of edge-degenerate operators which can be iterated to higher singularities.
We establish elements of a new approch to ellipticity and parametrices within operator algebras on a manifold with higher singularities, only based on some general axiomatic requirements on parameter-dependent operators in suitable scales of spaces. The idea is to model an iterative process with new generations of parameter-dependent operator theories, together with new scales of spaces that satisfy analogous requirements as the original ones, now on a corresponding higher level. The “full” calculus is voluminous; so we content ourselves here with some typical aspects such as symbols in terms of order reducing families, classes of relevant examples, and operators near the conical exit to infinity.
Linked Open Data (LOD) comprises very many and often large public data sets and knowledge bases. Those datasets are mostly presented in the RDF triple structure of subject, predicate, and object, where each triple represents a statement or fact. Unfortunately, the heterogeneity of available open data requires significant integration steps before it can be used in applications. Meta information, such as ontological definitions and exact range definitions of predicates, are desirable and ideally provided by an ontology. However in the context of LOD, ontologies are often incomplete or simply not available. Thus, it is useful to automatically generate meta information, such as ontological dependencies, range definitions, and topical classifications. Association rule mining, which was originally applied for sales analysis on transactional databases, is a promising and novel technique to explore such data. We designed an adaptation of this technique for min-ing Rdf data and introduce the concept of “mining configurations”, which allows us to mine RDF data sets in various ways. Different configurations enable us to identify schema and value dependencies that in combination result in interesting use cases. To this end, we present rule-based approaches for auto-completion, data enrichment, ontology improvement, and query relaxation. Auto-completion remedies the problem of inconsistent ontology usage, providing an editing user with a sorted list of commonly used predicates. A combination of different configurations step extends this approach to create completely new facts for a knowledge base. We present two approaches for fact generation, a user-based approach where a user selects the entity to be amended with new facts and a data-driven approach where an algorithm discovers entities that have to be amended with missing facts. As knowledge bases constantly grow and evolve, another approach to improve the usage of RDF data is to improve existing ontologies. Here, we present an association rule based approach to reconcile ontology and data. Interlacing different mining configurations, we infer an algorithm to discover synonymously used predicates. Those predicates can be used to expand query results and to support users during query formulation. We provide a wide range of experiments on real world datasets for each use case. The experiments and evaluations show the added value of association rule mining for the integration and usability of RDF data and confirm the appropriateness of our mining configuration methodology.
Unique column combinations of a relational database table are sets of columns that contain only unique values. Discovering such combinations is a fundamental research problem and has many different data management and knowledge discovery applications. Existing discovery algorithms are either brute force or have a high memory load and can thus be applied only to small datasets or samples. In this paper, the wellknown GORDIAN algorithm and "Apriori-based" algorithms are compared and analyzed for further optimization. We greatly improve the Apriori algorithms through efficient candidate generation and statistics-based pruning methods. A hybrid solution HCAGORDIAN combines the advantages of GORDIAN and our new algorithm HCA, and it significantly outperforms all previous work in many situations.
Development of efficient business process models and determination of their characteristic properties are subject of intense interdisciplinary research. Here, we consider a business process model as a directed graph. Its nodes correspond to the units identified by the modeler and the link direction indicates the causal dependencies between units. It is of primary interest to obtain the stationary flow on such a directed graph, which corresponds to the steady-state of a firm during the business process. Following the ideas developed recently for the World Wide Web, we construct the Google matrix for our business process model and analyze its spectral properties. The importance of nodes is characterized by PageRank and recently proposed CheiRank and 2DRank, respectively. The results show that this two-dimensional ranking gives a significant information about the influence and communication properties of business model units. We argue that the Google matrix method, described here, provides a new efficient tool helping companies to make their decisions on how to evolve in the exceedingly dynamic global market.
This article describes how to use statistical data analysis to obtain models directly from data. The focus is put on finding nonlinearities within a generalized additive model. These models are found by means of backfitting or more general algorithms, like the alternating conditional expectation value one. The method is illustrated by numerically generated data. As an application, the example of vortex ripple dynamics, a highly complex fluid-granular system, is treated
We present a nonparametric way to retrieve an additive system of differential equations in embedding space from a single time series. These equations can be treated with dynamical systems theory and allow for long-term predictions. We apply our method to a modified chaotic Chua oscillator in order to demonstrate its potential
We report measurements on the synchronization properties of organ pipes. First, we investigate influence of an external acoustical signal from a loudspeaker on the sound of an organ pipe. Second, the mutual influence of two pipes with different pitch is analyzed. In analogy to the externally driven, or mutually coupled self-sustained oscillators, one observes a frequency locking, which can be explained by synchronization theory. Further, we measure the dependence of the frequency of the signals emitted by two mutually detuned pipes with varying distance between the pipes. The spectrum shows a broad '' hump '' structure, not found for coupled oscillators. This indicates a complex coupling of the two organ pipes leading to nonlinear beat phenomena.
The Problem of front propagation in flowing media is addressed for laminar velocity fields in two dimensions. Three representative cases are discussed: stationary cellular flow, stationary shear flow, and percolating flow. Production terms of Fisher-Kolmogorov-Petrovskii-Piskunov type and of Arrhenius type are considered under the assumption of no feedback of the concentration on the velocity. Numerical simulations of advection-reaction-diffusion equations have been performed by an algorithm based on discrete-time maps. The results show a generic enhancement of the speed of front propagation by the underlying flow. For small molecular diffusivity, the front speed <i>V<sub><i>f</sub> depends on the typical flow velocity <i>U as<sup> </sup>a power law with an exponent depending on the topological properties of the flow, and on the ratio of reactive and advective time scales. For open-streamline flows we find always<sup> </sup><i>V<sub><i>f</sub>~<i>U, whereas for cellular flows we observe <i>V<sub><i>f</ sub>~<i>U<sup>1/4</sup> for fast advection and <i>V<sub><i>f</sub>~<i>U<sup>3/4</sup> for slow advection.
We study spatially localized excitations in a lattice of coupled standard maps. Time-periodic solutions (breathers) exist in a range of coupling that is shown to shrink as the period grows to infinity, thus excluding the possibility of time-quasiperiodic breathers. The evolution of initially localized chaotic and quasiperiodic states in a lattice is studied numerically. Chaos is demonstrated to spread