### Refine

#### Year of publication

#### Document Type

- Article (617)
- Preprint (363)
- Monograph/Edited Volume (351)
- Doctoral Thesis (101)
- Postprint (20)
- Other (15)
- Review (8)
- Conference Proceeding (5)
- Master's Thesis (1)

#### Language

- English (1481) (remove)

#### Keywords

- index (12)
- Fredholm property (10)
- boundary value problems (10)
- cluster expansion (9)
- elliptic operators (9)
- K-theory (7)
- manifolds with singularities (7)
- pseudodifferential operators (7)
- Cauchy problem (6)
- Toeplitz operators (6)

#### Institute

- Institut für Mathematik (1481) (remove)

Aspects of Boundary Problems in Analysis and Geometry : advances in partial differential equations
(2004)

General Relativity and Gravitation is a journal of studies in general relativity and related topics, published under the auspices of the International Committee on General Relativity and Gravitation. The journal publishes original, high-quality research papers on the theoretical and experimental aspects of general relativity and related topics; surveys and review articles on current research in general relativity and gravitation; news regarding conferences and other enterprises of interest to scientists in this field; and book reviews. All manuscripts and editorial correspondence, as well as books for review, should be submitted to the Editor, and authors may propose who among the Associate Editors will deal with their paper. All submitted articles are acknowledged and refereed.

We establish elements of a new approach to ellipticity and parametrices within operator algebras on manifolds with higher singularities, only based on some general axiomatic requirements on parameter-dependent operators in suitable scales of spaes. The idea is to model an iterative process with new generations of parameter-dependent operator theories, together with new scales of spaces that satisfy analogous requirements as the original ones, now on a corresponding higher level. The "full" calculus involves two separate theories, one near the tip of the corner and another one at the conical exit to infinity. However, concerning the conical exit to infinity, we establish here a new concrete calculus of edge-degenerate operators which can be iterated to higher singularities.

We establish elements of a new approch to ellipticity and parametrices within operator algebras on a manifold with higher singularities, only based on some general axiomatic requirements on parameter-dependent operators in suitable scales of spaces. The idea is to model an iterative process with new generations of parameter-dependent operator theories, together with new scales of spaces that satisfy analogous requirements as the original ones, now on a corresponding higher level. The “full” calculus is voluminous; so we content ourselves here with some typical aspects such as symbols in terms of order reducing families, classes of relevant examples, and operators near the conical exit to infinity.

It is shown that the Hankel transformation Hsub(v) acts in a class of weighted Sobolev spaces. Especially, the isometric mapping property of Hsub(v) which holds on L²(IRsub(+),rdr) is extended to spaces of arbitrary Sobolev order. The novelty in the approach consists in using techniques developed by B.-W. Schulze and others to treat the half-line Rsub(+) as a manifold with a conical singularity at r = 0. This is achieved by pointing out a connection between the Hankel transformation and the Mellin transformation.The procedure proposed leads at the same time to a short proof of the Hankel inversion formula. An application to the existence and higher regularity of solutions, including their asymptotics, to the 1-1-dimensional edge-degenerated wave equation is given.

An expansion for a class of functions is called stable if the partial sums are bounded uniformly in the class. Stable expansions are of key importance in numerical analysis where functions are given up to certain error. We show that expansions in homogeneous functions are always stable on a small ball around the origin, and evaluate the radius of the largest ball with this property.

In 1914 Bohr proved that there is an r ∈ (0, 1) such that if a power series converges in the unit disk and its sum has modulus less than 1 then, for |z| < r, the sum of absolute values of its terms is again less than 1. Recently analogous results were obtained for functions of several variables. The aim of this paper is to comprehend the theorem of Bohr in the context of solutions to second order elliptic equations meeting the maximum principle.

We study the possibility of obtaining a computational turbulence model by means of non-dissipative regularisation of the compressible atmospheric equations for climate-type applications. We use an -regularisation (Lagrangian averaging) of the atmospheric equations. For the hydrostatic and compressible atmospheric equations discretised using a finite volume method on unstructured grids, deterministic and non-deterministic numerical experiments are conducted to compare the individual solutions and the statistics of the regularised equations to those of the original model. The impact of the regularisation parameter is investigated. Our results confirm the principal compatibility of -regularisation with atmospheric dynamics and encourage further investigations within atmospheric model including complex physical parametrisations.

The generalized hybrid Monte Carlo (GHMC) method combines Metropolis corrected constant energy simulations with a partial random refreshment step in the particle momenta. The standard detailed balance condition requires that momenta are negated upon rejection of a molecular dynamics proposal step. The implication is a trajectory reversal upon rejection, which is undesirable when interpreting GHMC as thermostated molecular dynamics. We show that a modified detailed balance condition can be used to implement GHMC without momentum flips. The same modification can be applied to the generalized shadow hybrid Monte Carlo (GSHMC) method. Numerical results indicate that GHMC/GSHMC implementations with momentum flip display a favorable behavior in terms of sampling efficiency, i.e., the traditional GHMC/GSHMC implementations with momentum flip got the advantage of a higher acceptance rate and faster decorrelation of Monte Carlo samples. The difference is more pronounced for GHMC. We also numerically investigate the behavior of the GHMC method as a Langevin-type thermostat. We find that the GHMC method without momentum flip interferes less with the underlying stochastic molecular dynamics in terms of autocorrelation functions and it to be preferred over the GHMC method with momentum flip. The same finding applies to GSHMC.

We investigate nonlinear problems which appear as Euler-Lagrange equations for a variational problem. They include in particular variational boundary value problems for nonlinear elliptic equations studied by F. Browder in the 1960s. We establish a solvability criterion of such problems and elaborate an efficient orthogonal projection method for constructing approximate solutions.

We elaborate a boundary Fourier method for studying an analogue of the Hilbert problem for analytic functions within the framework of generalised Cauchy-Riemann equations. The boundary value problem need not satisfy the Shapiro-Lopatinskij condition and so it fails to be Fredholm in Sobolev spaces. We show a solvability condition of the Hilbert problem, which looks like those for ill-posed
problems, and construct an explicit formula for approximate solutions.

We define weak boundary values of solutions to those nonlinear differential equations which appear as Euler-Lagrange equations of variational problems. As a result we initiate the theory of Lagrangian boundary value problems in spaces of appropriate smoothness. We also analyse if the concept of mapping degree of current importance applies to the study of Lagrangian problems.

We develop the method of Fischer-Riesz equations for general boundary value problems elliptic in the sense of Douglis-Nirenberg. To this end we reduce them to a boundary problem for a (possibly overdetermined) first order system whose classical symbol has a left inverse. For such a problem there is a uniquely determined boundary value problem which is adjoint to the given one with respect to the Green formula. On using a well elaborated theory of approximation by solutions of the adjoint problem, we find the Cauchy data of solutions of our problem.

We study a boundary value problem for an overdetermined elliptic system of nonlinear first order differential equations with linear boundary operators. Such a problem is solvable for a small set of data, and so we pass to its variational formulation which consists in minimising the discrepancy. The Euler-Lagrange equations for the variational problem are far-reaching analogues of the classical Laplace equation. Within the framework of Euler-Lagrange equations we specify an operator on the boundary whose zero set consists precisely of those boundary data for which the initial problem is solvable. The construction of such operator has much in common with that of the familiar Dirichlet to Neumann operator. In the case of linear problems we establish complete results.

In this paper a technique to obtain a first approximation for singular inverse Sturm-Liouville problems with a symmetrical potential is introduced. The singularity, as a result of unbounded domain (-infinity, infinity), is treated by considering numerically the asymptotic limit of the associated problem on a finite interval (-L, L). In spite of this treatment, the problem has still an ill-conditioned structure unlike the classical regular ones and needs regularization techniques. Direct computation of eigenvalues in iterative solution procedure is made by means of pseudospectral methods. A fairly detailed description of the numerical algorithm and its applications to specific examples are presented to illustrate the accuracy and convergence behaviour of the proposed approach.

Two recent works have adapted the Kalman-Bucy filter into an ensemble setting. In the first formulation, the ensemble of perturbations is updated by the solution of an ordinary differential equation (ODE) in pseudo-time, while the mean is updated as in the standard Kalman filter. In the second formulation, the full ensemble is updated in the analysis step as the solution of single set of ODEs in pseudo-time. Neither requires matrix inversions except for the frequently diagonal observation error covariance.
We analyse the behaviour of the ODEs involved in these formulations. We demonstrate that they stiffen for large magnitudes of the ratio of background error to observational error variance, and that using the integration scheme proposed in both formulations can lead to failure. A numerical integration scheme that is both stable and is not computationally expensive is proposed. We develop transform-based alternatives for these Bucy-type approaches so that the integrations are computed in ensemble space where the variables are weights (of dimension equal to the ensemble size) rather than model variables.
Finally, the performance of our ensemble transform Kalman-Bucy implementations is evaluated using three models: the 3-variable Lorenz 1963 model, the 40-variable Lorenz 1996 model, and a medium complexity atmospheric general circulation model known as SPEEDY. The results from all three models are encouraging and warrant further exploration of these assimilation techniques.

We derive local integral and sup-estimates for the curvature of stable marginally outer trapped surfaces in a sliced space-time. The estimates bound the shear of a marginally outer trapped surface in terms of the intrinsic and extrinsic curvature of a slice containing the surface. These estimates are well adapted to situations of physical interest, such as dynamical horizons.

Asymptotic solutions of the Dirichlet problem for the heat equation at a characteristic point
(2012)

The Dirichlet problem for the heat equation in a bounded domain is characteristic, for there are boundary points at which the boundary touches a characteristic hyperplane t = c, c being a constant. It was I.G. Petrovskii (1934) who first found necessary and sufficient conditions on the boundary which guarantee that the solution is continuous up to the characteristic point, provided that the Dirichlet data are continuous. This paper initiated standing interest in studying general boundary value problems for parabolic equations in bounded domains. We contribute to the study by constructing a formal solution of the Dirichlet problem for the heat equation in a neighbourhood of a characteristic boundary point and showing its asymptotic character.

Asymptotic Solutions of the Dirichlet Problem for the Heat Equation at a Characteristic Point
(2015)

The Dirichlet problem for the heat equation in a bounded domain aS, a"e (n+1) is characteristic because there are boundary points at which the boundary touches a characteristic hyperplane t = c, where c is a constant. For the first time, necessary and sufficient conditions on the boundary guaranteeing that the solution is continuous up to the characteristic point were established by Petrovskii (1934) under the assumption that the Dirichlet data are continuous. The appearance of Petrovskii's paper was stimulated by the existing interest to the investigation of general boundary-value problems for parabolic equations in bounded domains. We contribute to the study of this problem by finding a formal solution of the Dirichlet problem for the heat equation in a neighborhood of a cuspidal characteristic boundary point and analyzing its asymptotic behavior.