### Refine

#### Year of publication

#### Document Type

- Monograph/Edited Volume (120)
- Preprint (114)
- Article (83)
- Postprint (1)

#### Language

- English (318) (remove)

#### Keywords

- elliptic operators (6)
- manifolds with singularities (6)
- Fredholm property (5)
- boundary value problems (5)
- index (5)
- pseudodifferential operators (5)
- Boundary value problems (4)
- relative index (4)
- 'eta' invariant (3)
- Atiyah-Bott condition (3)

We establish elements of a new approch to ellipticity and parametrices within operator algebras on a manifold with higher singularities, only based on some general axiomatic requirements on parameter-dependent operators in suitable scales of spaces. The idea is to model an iterative process with new generations of parameter-dependent operator theories, together with new scales of spaces that satisfy analogous requirements as the original ones, now on a corresponding higher level. The “full” calculus is voluminous; so we content ourselves here with some typical aspects such as symbols in terms of order reducing families, classes of relevant examples, and operators near the conical exit to infinity.

Parabolic equations on manifolds with singularities require a new calculus of anisotropic pseudo-differential operators with operator-valued symbols. The paper develops this theory along the lines of sn abstract wedge calculus with strongly continuous groups of isomorphisms on the involved Banach spaces. The corresponding pseodo-diferential operators are continuous in anisotropic wedge Sobolev spaces, and they form an alegbra. There is then introduced the concept of anisotropic parameter-dependent ellipticity, based on an order reduction variant of the pseudo-differential calculus. The theory is appled to a class of parabolic differential operators, and it is proved the invertibility in Sobolev spaces with exponential weights at infinity in time direction.

We study (pseudo-)differential operators on a manifold with edge Z, locally modelled on a wedge with model cone that has itself a base manifold W with smooth edge Y . The typical operators A are corner degenerate in a specific way. They are described (modulo ‘lower order terms’) by a principal symbolic hierarchy σ(A) = (σ ψ(A), σ ^(A), σ ^(A)), where σ ψ is the interior symbol and σ ^(A)(y, η), (y, η) 2 T*Y \ 0, the (operator-valued) edge symbol of ‘first generation’, cf. [15]. The novelty here is the edge symbol σ^ of ‘second generation’, parametrised by (z, Ϛ) 2 T*Z \ 0, acting on weighted Sobolev spaces on the infinite cone with base W. Since such a cone has edges with exit to infinity, the calculus has the problem to understand the behaviour of operators on a manifold of that kind. We show the continuity of corner-degenerate operators in weighted edge Sobolev spaces, and we investigate the ellipticity of edge symbols of second generation. Starting from parameter-dependent elliptic families of edge operators of first generation, we obtain the Fredholm property of higher edge symbols on the corresponding singular infinite model cone.

Operators on a manifold with (geometric) singularities are degenerate in a natural way. They have a principal symbolic structure with contributions from the different strata of the configuration. We study the calculus of such operators on the level of edge symbols of second generation, based on specific quantizations of the corner-degenerate interior symbols, and show that this structure is preserved under compositions.

We study mixed boundary value problems, here mainly of Zaremba type for the Laplacian within an edge algebra of boundary value problems. The edge here is the interface of the jump from the Dirichlet to the Neumann condition. In contrast to earlier descriptions of mixed problems within such an edge calculus, cf. (Harutjunjan and Schulze, Elliptic mixed, transmission and singular crack problems, 2008), we focus on new Mellin edge quantisations of the Dirichlet-to-Neumann operator on the Neumann side of the boundary and employ a pseudo-differential calculus of corresponding boundary value problems without the transmission property at the interface. This allows us to construct parametrices for the original mixed problem in a new and transparent way.

Boundary value problems on a manifold with smooth boundary are closely related to the edge calculus where the boundary plays the role of an edge. The problem of expressing parametrices of Shapiro-Lopatinskij elliptic boundary value problems for differential operators gives rise to pseudo-differential operators with the transmission property at the boundary. However, there are interesting pseudo-differential operators without the transmission property, for instance, the Dirichlet-to-Neumann operator. In this case the symbols become edge-degenerate under a suitable quantisation, cf. Chang et al. (J Pseudo-Differ Oper Appl 5(2014):69-155, 2014). If the boundary itself has singularities, e.g., conical points or edges, then the symbols are corner-degenerate. In the present paper we study elements of the corresponding corner pseudo-differential calculus.

Elliptic equations on configurations W = W-1 boolean OR (. . .) boolean OR W-N with edge Y and components W-j of different dimension can be treated in the frame of pseudo-differential analysis on manifolds with geometric singularities, here edges. Starting from edge-degenerate operators on Wj, j = 1, . . . , N, we construct an algebra with extra 'transmission' conditions on Y that satisfy an analogue of the Shapiro-Lopatinskij condition. Ellipticity refers to a two-component symbolic hierarchy with an interior and an edge part; the latter one is operator- valued, operating on the union of different dimensional model cones. We construct parametrices within our calculus, where exchange of information between the various components is encoded in Green and Mellin operators that are smoothing on WY. Moreover, we obtain regularity of solutions in weighted edge spaces with asymptotics

Elliptic equations on configurations W = W1 ∪ ... ∪ Wn with edge Y and components Wj of different dimension can be treated in the frame of pseudo-differential analysis on manifolds with geometric singularities, here, edges. Starting from edge-degenerate operators on Wj, j = 1, ..., N, we construct an algebra with extra "transmission" conditions on Y that satisfy an analogue of the Shapiro-Lopatinskij condition. Ellipticity refers to a two-component symbolic hierarchy with an interior and an edge part; the latter one is operator-valued, operating on the union of different dimensional model cones. We construct parametrices within our calculus, where exchange of information between the various components is encoded in Green and Mellin operators that are smoothing on W\Y. Moreover, we obtain regularity of solutions in weighted edge spaces with asymptotics.

Mixed elliptic boundary value problems are characterised by conditions which have a jump along an interface of codimension 1 on the boundary. We study such problems in weighted edge Sobolev spaces and show the Fredholm property and the existence of parametrices under additional conditions of trace and potential type on the interface. Our methods from the calculus of boundary value problems on a manifold with edges will be illustrated by the Zaremba problem and other mixed problems for the Laplace operator.

The ellipticity of operators on a manifold with edge is defined as the bijectivity of the components of a principal symbolic hierarchy σ = (σψ, σ∧), where the second component takes value in operators on the infinite model cone of the local wedges. In general understanding of edge problems there are two basic aspects: Quantisation of edge-degenerate operators in weighted Sobolev spaces, and verifying the elliptcity of the principal edge symbol σ∧ which includes the (in general not explicitly known) number of additional conditions on the edge of trace and potential type. We focus here on these queations and give explicit answers for a wide class of elliptic operators that are connected with the ellipticity of edge boundary value problems and reductions to the boundary. In particular, we study the edge quantisation and ellipticity for Dirichlet-Neumann operators with respect to interfaces of some codimension on a boundary. We show analogues of the Agranovich-Dynin formula for edge boundary value problems, and we establish relations of elliptic operators for different weights, via the spectral flow of the underlying conormal symbols.

The ellipticity of operators on a manifold with edge is defined as the bijectivity of the components of a principal symbolic hierarchy sigma = (sigma(psi), sigma(boolean AND)), where the second component takes values in operators on the infinite model cone of the local wedges. In the general understanding of edge problems there are two basic aspects: Quantisation of edge-degenerate operators in weighted Sobolev spaces, and verifying the ellipticity of the principal edge symbol sigma(boolean AND) which includes the (in general not explicity known) number of additional conditions of trace and potential type on the edge. We focus here on these questions and give explicit answers for a wide class of elliptic operators that are connected with the ellipticity of edge boundary value problems and reductions to the boundary. In particular, we study the edge quantisation and ellipticity for Dirichlet-Neumann operators with respect to interfaces of some codimension on a boundary. We show analogues of the Agranovich-Dynin formula for edge boundary value problems.

We construct a class of elliptic operators in the edge algebra on a manifold M with an embedded submanifold Y interpreted as an edge. The ellipticity refers to a principal symbolic structure consisting of the standard interior symbol and an operator-valued edge symbol. Given a differential operator A on M for every (sufficiently large) s we construct an associated operator A(s) in the edge calculus. We show that ellipticity of A in the usual sense entails ellipticity of A(s) as an edge operator (up to a discrete set of reals s). Parametrices P of A then correspond to parametrices P-s of A(s) interpreted as Mellin-edge representations of P. Copyright (c) 2005 John Wiley & Sons, Ltd

We construct a class of elliptic operators in the edge algebra on a manifold M with an embedded submanifold Y interpreted as an edge. The ellipticity refers to a principal symbolic structure consisting of the standard interior symbol and an operator-valued edge symbol. Given a differential operator A on M for every (sufficiently large) s we construct an associated operator As in the edge calculus. We show that ellipticity of A in the usual sense entails ellipticity of As as an edge operator (up to a discrete set of reals s). Parametrices P of A then correspond to parametrices Ps of As, interpreted as Mellin-edge representations of P.

For general elliptic pseudodifferential operators on manifolds with singular points, we prove an algebraic index formula. In this formula the symbolic contributions from the interior and from the singular points are explicitly singled out. For two-dimensional manifolds, the interior contribution is reduced to the Atiyah-Singer integral over the cosphere bundle while two additional terms arise. The first of the two is one half of the 'eta' invariant associated to the conormal symbol of the operator at singular points. The second term is also completely determined by the conormal symbol. The example of the Cauchy-Riemann operator on the complex plane shows that all the three terms may be non-zero.

In the preceding paper we proved an explicit index formula for elliptic pseudodifferential operators on a two-dimensional manifold with conical points. Apart from the Atiyah-Singer integral, it contains two additional terms, one of the two being the 'eta' invariant defined by the conormal symbol. In this paper we clarify the meaning of the additional terms for differential operators.

The index formula for elliptic pseudodifferential operators on a two-dimensional manifold with conical points contains the Atiyah-Singer integral as well as two additional terms. One of the two is the 'eta' invariant defined by the conormal symbol, and the other term is explicitly expressed via the principal and subprincipal symbols of the operator at conical points. In the preceding paper we clarified the meaning of the additional terms for first-order differential operators. The aim of this paper is an explicit description of the contribution of a conical point for higher-order differential operators. We show that changing the origin in the complex plane reduces the entire contribution of the conical point to the shifted 'eta' invariant. In turn this latter is expressed in terms of the monodromy matrix for an ordinary differential equation defined by the conormal symbol.

We introduce a natural symmetry condition for a pseudodifferential operator on a manifold with cylindrical ends ensuring that the operator admits a doubling across the boundary. For such operators we prove an explicit index formula containing, apart from the Atiyah-Singer integral, a finite number of residues of the logarithmic derivative of the conormal symbol.