### Refine

#### Year of publication

#### Document Type

- Article (252)
- Preprint (9)
- Monograph/Edited Volume (8)
- Postprint (8)

#### Language

- English (277) (remove)

#### Keywords

- Complex networks (2)
- models (2)
- 3D medical image analysis (1)
- African climate (1)
- Algebraic geometry (1)
- Bifurcation parameters (1)
- Biomass (1)
- Calvin cycle (1)
- Chaotic System (1)
- Cold air surges (1)

#### Institute

- Institut für Physik und Astronomie (214)
- Interdisziplinäres Zentrum für Dynamik komplexer Systeme (47)
- Institut für Psychologie (14)
- Institut für Erd- und Umweltwissenschaften (6)
- Institut für Biochemie und Biologie (4)
- Extern (3)
- Department Psychologie (2)
- Institut für Geowissenschaften (2)
- Institut für Linguistik / Allgemeine Sprachwissenschaft (2)
- Mathematisch-Naturwissenschaftliche Fakultät (2)

The temporal dynamics of climate processes are spread across different timescales and, as such, the study of these processes at only one selected timescale might not reveal the complete mechanisms and interactions within and between the (sub-) processes. To capture the non-linear interactions between climatic events, the method of event synchronization has found increasing attention recently. The main drawback with the present estimation of event synchronization is its restriction to analysing the time series at one reference timescale only. The study of event synchronization at multiple scales would be of great interest to comprehend the dynamics of the investigated climate processes. In this paper, the wavelet-based multi-scale event synchronization (MSES) method is proposed by combining the wavelet transform and event synchronization. Wavelets are used extensively to comprehend multi-scale processes and the dynamics of processes across various timescales. The proposed method allows the study of spatio-temporal patterns across different timescales. The method is tested on synthetic and real-world time series in order to check its replicability and applicability. The results indicate that MSES is able to capture relationships that exist between processes at different timescales.

We present different tests for phase synchronization which improve the procedures currently used in the literature. This is accomplished by using a two-samples test setup and by utilizing insights and methods from directional statistics and bootstrap theory. The tests differ in the generality of the situation in which they can be applied as well as in their complexity, including computational cost. A modification of the resampling technique of the bootstrap is introduced, making it possible to fully utilize data from time series.

A method for the multivariate analysis of statistical phase synchronization phenomena in empirical data is presented. A first statistical approach is complemented by a stochastic dynamic model, to result in a data analysis algorithm which can in a specific sense be shown to be a generic multivariate statistical phase synchronization analysis. The method is applied to EEG data from a psychological experiment, obtaining results which indicate the relevance of this method in the context of cognitive science as well as in other fields.

A method for the multivariate analysis of statistical phase synchronization phenomena in empirical data is presented. A first statistical approach is complemented by a stochastic dynamic model, to result in a data analysis algorithm which can in a specific sense be shown to be a generic multivariate statistical phase synchronization analysis. The method is applied to EEG data from a psychological experiment, obtaining results which indicate the relevance of this method in the context of cognitive science as well as in other fields

We present different tests for phase synchronization which improve the procedures currently used in the literature. This is accomplished by using a two-sample test setup and by utilizing insights and methods from directional statistics and bootstrap theory. The tests differ in the generality of the situation in which they can be applied as well as in their complexity, including computational cost. A modification of the resampling technique of the bootstrap is introduced, making it possible to fully utilize data from time series

We propose a new autonomous dynamical system of dimension N=4 that demonstrates the regime of stable two- frequency motions and period-doubling bifurcations of a two-dimensional torus. It is shown that the period-doubling bifurcation of the two-dimensional torus is not followed by the resonance phenomenon, and the two-dimensional ergodic torus undergoes a period-doubling bifurcation. The interaction of two generators is also analyzed. The phenomenon of external and mutual synchronization of two-frequency oscillations is observed, for which winding number locking on a two- dimensional torus takes place

We study numerically the behavior of the autocorrelation function (ACF) and the power spectrum of spiral attractors without and in the presence of noise. It is shown that the ACF decays exponentially and has two different time scales. The rate of the ACF decrease is defined by the amplitude fluctuations on small time intervals, i.e., when tau < tau(cor), and by the effective diffusion coefficient of the instantantaneous phase on large time intervals. it is also demonstrated that the ACF in the Poincare map also decreases according to the exponential law exp(-lambda(+)k), where lambda(+) is the positive Lyapunov exponent. The obtained results are compared with the theory of fluctuations for the Van der Pol oscillator

We present results of physical experiments where we measure the autocorrelation function (ACF) and the spectral linewidth of the basic frequency of a spiral chaotic attractor in a generator with inertial nonlinearity both without and in the presence of external noise. It is shown that the ACF of spiral attractors decays according to an exponential law with a decrement which is defined by the phase diffusion coefficient. It is also established that the evolution of the instantaneous phase can be approximated by a Wiener random process

An approach is presented for coupled chaotic systems with weak coherent motion, from which we estimate the upper bound value for the absolute phase difference in phase synchronous states. This approach shows that synchronicity in phase implies synchronicity in the time of events, a characteristic explored to derive an equation to detect phase synchronization, based on the absolute difference between the time of these events. We demonstrate the potential use of this approach for the phase coherent and the funnel attractor of the Rossler system, as well as for the spiking/bursting Rulkov map.

Chaotic channel
(2005)

This work combines the theory of chaotic synchronization with the theory of information in order to introduce the chaotic channel, an active medium formed by connected chaotic systems. This subset of a large chaotic net represents the path along which information flows. We show that the possible amount of information exchange between the transmitter, where information enters the net, and the receiver, the destination of the information, is proportional to the level of synchronization between these two special subsystems

Concepts from Ergodic Theory are used to describe the existence of special non-transitive maps in attractors of phase synchronous chaotic oscillators. In particular, it is shown that, for a class of phase-coherent oscillators, these special maps imply phase synchronization. We illustrate these ideas in the sinusoidally forced Chua's circuit and two coupled Rossler oscillators. Furthermore, these results are extended to other coupled chaotic systems. In addition, a phase for a chaotic attractor is defined from the tangent vector of the flow. Finally, it is discussed how these maps can be used for the real-time detection of phase synchronization in experimental systems. (c) 2005 Elsevier B.V. All rights reserved

We show many versatile phase synchronous configurations that emerge in an array of coupled chaotic elements due to the presence of a periodic stimulus. Then, we explain the relevance of these configurations to the understanding of how information about such a. stimulus is transmitted from one side to the other in this array. The stimulus actively creates the ways to be transmitted, by making the chaotic elements to phase synchronize

We apply the recently developed symbolic resonance analysis to electroencephalographic measurements of event- related brain potentials (ERPs) in a language processing experiment by using a three-symbol static encoding with varying thresholds for analyzing the ERP epochs, followed by a spin-flip transformation as a nonlinear filter. We compute an estimator of the signal-to-noise ratio (SNR) for the symbolic dynamics measuring the coherence of threshold-crossing events. Hence, we utilize the inherent noise of the EEG for sweeping the underlying ERP components beyond the encoding thresholds. Plotting the SNR computed within the time window of a particular ERP component (the N400) against the encoding thresholds, we find different resonance curves for the experimental conditions. The maximal differences of the SNR lead to the estimation of optimal encoding thresholds. We show that topographic brain maps of the optimal threshold voltages and of their associated coherence differences are able to dissociate the underlying physiological processes, while corresponding maps gained from the customary voltage averaging technique are unable to do so

We present an automatic control method for phase locking of regular and chaotic non-identical oscillations, when all subsystems interact via feedback. This method is based on the well known principle of feedback control which takes place in nature and is successfully used in engineering. In contrast to unidirectional and bidirectional coupling, the approach presented here supposes the existence of a special controller, which allows to change the parameters of the controlled systems. First we discuss general principles of automatic phase synchronization (PS) for arbitrary coupled systems with a controller whose input is given by a special quadratic form of coordinates of the individual systems and its output is a result of the application of a linear differential operator. We demonstrate the effectiveness of our approach for controlled PS on several examples: (i) two coupled regular oscillators, (ii) coupled regular and chaotic oscillators, (iii) two coupled chaotic R"ossler oscillators, (iv) two coupled foodweb models, (v) coupled chaotic R"ossler and Lorenz oscillators, (vi) ensembles of locally coupled regular oscillators, (vii) ensembles of locally coupled chaotic oscillators, and (viii) ensembles of globally coupled chaotic oscillators.

We study phase synchronization in a network motif with a starlike structure in which the central node's (the hub's) frequency is strongly detuned against the other peripheral nodes. We find numerically and experimentally a regime of remote synchronization (RS), where the peripheral nodes form a phase synchronized cluster, while the hub remains free with its own dynamics and serves just as a transmitter for the other nodes. We explain the mechanism for this RS by the existence of a free amplitude and also show that systems with a fixed or constant amplitude, such as the classic Kuramoto phase oscillator, are not able to generate this phenomenon. Further, we derive an analytic expression which supports our explanation of the mechanism.

In integrated medical considerations of the biological human system, both intellectual and motor performances in a similar manner are considered as a result of the function of the nervous system. Consequently, universal minimal dysfunctions of the central nervous system may lead to both intellectual and physical anomalies. Therefore, this study tests the hypothesis that there is a connection between the balance ability as a motor parameter and school success as an intellectual parameter. A postural measuring system based on the force-moment sensor technique was used to record the postural balance regulation of 773 children (circle divide 11 +/- 1 years). The school achievement of each child was determined by school grades. Data analysis was performed by linear as well as by nonlinear time series analyses. There are highly significant differences in balance regulation between good and poor pupils recognized by several linear and nonlinear parameters. Good pupils could be discriminated from pupils with bad results in learning to 80 %. The results support the hypothesis mentioned above. One possible explanation for the poor regulation of balance in bad learners could be a deficit in the neural maturity. In future, further developments will be targeted on higher discrimination levels, possibly in order to predict school success. On the other hand, the effects of special movement exercises on the neural development in childhood will be the focus in our further work

Starting from an initial wiring of connections, we show that the synchronizability of a network can be significantly improved by evolving the graph along a time dependent connectivity matrix. We consider the case of connectivity matrices that commute at all times, and compare several approaches to engineer the corresponding commutative graphs. In particular, we show that synchronization in a dynamical network can be achieved even in the case in which each individual commutative graphs does not give rise to synchronized behavior

Based on high-spatiotemporal-resolution data, the authors perform a climatological study of strong rainfall events propagating from southeastern South America to the eastern slopes of the central Andes during the monsoon season. These events account for up to 70% of total seasonal rainfall in these areas. They are of societal relevance because of associated natural hazards in the form of floods and landslides, and they form an intriguing climatic phenomenon, because they propagate against the direction of the low-level moisture flow from the tropics. The responsible synoptic mechanism is analyzed using suitable composites of the relevant atmospheric variables with high temporal resolution. The results suggest that the low-level inflow from the tropics, while important for maintaining sufficient moisture in the area of rainfall, does not initiate the formation of rainfall clusters. Instead, alternating low and high pressure anomalies in midlatitudes, which are associated with an eastward-moving Rossby wave train, in combination with the northwestern Argentinean low, create favorable pressure and wind conditions for frontogenesis and subsequent precipitation events propagating from southeastern South America toward the Bolivian Andes.

Extreme Rainfall of the South American Monsoon System: A Dataset Comparison Using Complex Networks
(2015)

In this study, the authors compare six different rainfall datasets for South America with a focus on their representation of extreme rainfall during the monsoon season (December February): the gauge-calibrated TRMM 3B42 V7 satellite product; the near-real-time TRMM 3B42 V7 RT, the GPCP 1 degrees daily (1DD) V1.2 satellite gauge combination product, the Interim ECMWF Re-Analysis (ERA-Interim) product; output of a high-spatial-resolution run of the ECHAM6 global circulation model; and output of the regional climate model Eta. For the latter three, this study can be understood as a model evaluation. In addition to statistical values of local rainfall distributions, the authors focus on the spatial characteristics of extreme rainfall covariability. Since traditional approaches based on principal component analysis are not applicable in the context of extreme events, they apply and further develop methods based on complex network theory. This way, the authors uncover substantial differences in extreme rainfall patterns between the different datasets: (i) The three model-derived datasets yield very different results than the satellite gauge combinations regarding the main climatological propagation pathways of extreme events as well as the main convergence zones of the monsoon system. (ii) Large discrepancies are found for the development of mesoscale convective systems in southeastern South America. (iii) Both TRMM datasets and ECHAM6 indicate a linkage of extreme rainfall events between the central Amazon basin and the eastern slopes of the central Andes, but this pattern is not reproduced by the remaining datasets. The authors' study suggests that none of the three model-derived datasets adequately captures extreme rainfall patterns in South America.

We give evidence of frequency entrainment of dominant peaks in the chaotic spectra of two coupled chaotic nonautonomous oscillators. At variance with the autonomous case, the phenomenon is here characterized by the vanishing of a previously positive Lyapunov exponent in the spectrum, which takes place for a broad range of the coupling strength parameter. Such a state is studied also for the case of chaotic oscillators with ill-defined phases due to the absence of a unique center of rotation. Different phase synchronization indicators are used to circumvent this difficulty

During the last glacial period, climate records from the North Atlantic region exhibit a pronounced spectral component corresponding to a period of about 1470 years, which has attracted much attention. This spectral peak is closely related to the recurrence pattern of Dansgaard-Oeschger (DO) events. In previous studies a red noise random process, more precisely a first-order autoregressive (AR1) process, was used to evaluate the statistical significance of this peak, with a reported significance of more than 99%. Here we use a simple mechanistic two-state model of DO events, which itself was derived from a much more sophisticated ocean-atmosphere model of intermediate complexity, to numerically evaluate the spectral properties of random (i.e., solely noise-driven) events. This way we find that the power spectral density of random DO events differs fundamentally from a simple red noise random process. These results question the applicability of linear spectral analysis for estimating the statistical significance of highly non-linear processes such as DO events. More precisely, to enhance our scientific understanding about the trigger of DO events, we must not consider simple "straw men" as, for example, the AR1 random process, but rather test against realistic alternative descriptions.

Despite many previous Studies on the association between hyperthyroidism and the hyperadrenergic state, controversies still exist. Detrended fluctuation analysis (DFA) is a well recognized method in the nonlinear analysis of heart rate variability (HRV), and it has physiological significance related to the autonomic nervous system. In particular, an increased short-term scaling exponent alpha 1 calculated from DFA is associated with both increased sympathetic activity and decreased vagal activity. No study has investigated the DFA of HRV in hyperthyroidism. This study was designed to assess the sympathovagal balance in hyperthyroidism. We performed the DFA along with the linear analysis of HRV in 36 hyperthyroid Graves' disease patients (32 females and 4 males; age 30 +/- 1 years, means +/- SE) and 36 normal controls matched by sex, age and body mass index. Compared with the normal controls, the hyperthyroid patients revealed a significant increase (P < 0.001) in alpha 1 (hyperthyroid 1.28 +/- 0.04 versus control 0.91 +/- 0.02), long-term scaling exponent alpha 2 (1.05 +/- 0.02 versus 0.90 +/- 0.01), overall scaling exponent alpha (1.11 +/- 0.02 versus 0.89 +/- 0.01), low frequency power in normalized units (LF%) and the ratio of low frequency power to high frequency power (LF/HF); and a significant decrease (P < 0.001) in the standard deviation of the R-R intervals (SDNN) and high frequency power (HF). In conclusion, hyperthyroidism is characterized by concurrent sympathetic activation and vagal withdrawal. This sympathovagal imbalance state in hyperthyroidism helps to explain the higher prevalence of atrial fibrillation and exercise intolerance among hyperthyroid patients.

We introduce a modified dynamical optimization coupling scheme to enhance the synchronizability in the scale- free networks as well as to keep uniform and converging intensities during the transition to synchronization. Further, the size of networks that can be synchronizable exceeds by several orders of magnitude the size of unweighted networks.

Experimental evidence of anomalous phase synchronization in two diffusively coupled Chua oscillators
(2006)

We study the transition to phase synchronization in two diffusively coupled, nonidentical Chua oscillators. In the experiments, depending on the used parameterization, we observe several distinct routes to phase synchronization, including states of either in-phase, out-of-phase, or antiphase synchronization, which may be intersected by an intermediate desynchronization regime with large fluctuations of the frequency difference. Furthermore, we report the first experimental evidence of an anomalous transition to phase synchronization, which is characterized by an initial enlargement of the natural frequency difference with coupling strength. This results in a maximal frequency disorder at intermediate coupling levels, whereas usual phase synchronization via monotonic decrease in frequency difference sets in only for larger coupling values. All experimental results are supported by numerical simulations of two coupled Chua models

Nonlinear detection of paleoclimate-variability transitions possibly related to human evolution
(2011)

Potential paleoclimatic driving mechanisms acting on human evolution present an open problem of cross-disciplinary scientific interest. The analysis of paleoclimate archives encoding the environmental variability in East Africa during the past 5 Ma has triggered an ongoing debate about possible candidate processes and evolutionary mechanisms. In this work, we apply a nonlinear statistical technique, recurrence network analysis, to three distinct marine records of terrigenous dust flux. Our method enables us to identify three epochs with transitions between qualitatively different types of environmental variability in North and East Africa during the (i) Middle Pliocene (3.35-3.15 Ma B. P.), (ii) Early Pleistocene (2.25-1.6 Ma B. P.), and (iii) Middle Pleistocene (1.1-0.7 Ma B. P.). A deeper examination of these transition periods reveals potential climatic drivers, including (i) large-scale changes in ocean currents due to a spatial shift of the Indonesian throughflow in combination with an intensification of Northern Hemisphere glaciation, (ii) a global reorganization of the atmospheric Walker circulation induced in the tropical Pacific and Indian Ocean, and (iii) shifts in the dominating temporal variability pattern of glacial activity during the Middle Pleistocene, respectively. A reexamination of the available fossil record demonstrates statistically significant coincidences between the detected transition periods and major steps in hominin evolution. This result suggests that the observed shifts between more regular and more erratic environmental variability may have acted as a trigger for rapid change in the development of humankind in Africa.

Complex networks in climate dynamics : comparing linear and nonlinear network construction methods
(2009)

Complex network theory provides a powerful framework to statistically investigate the topology of local and non- local statistical interrelationships, i.e. teleconnections, in the climate system. Climate networks constructed from the same global climatological data set using the linear Pearson correlation coefficient or the nonlinear mutual information as a measure of dynamical similarity between regions, are compared systematically on local, mesoscopic and global topological scales. A high degree of similarity is observed on the local and mesoscopic topological scales for surface air temperature fields taken from AOGCM and reanalysis data sets. We find larger differences on the global scale, particularly in the betweenness centrality field. The global scale view on climate networks obtained using mutual information offers promising new perspectives for detecting network structures based on nonlinear physical processes in the climate system.

The analysis of palaeoclimate time series is usually affected by severe methodological problems, resulting primarily from non-equidistant sampling and uncertain age models. As an alternative to existing methods of time series analysis, in this paper we argue that the statistical properties of recurrence networks - a recently developed approach - are promising candidates for characterising the system's nonlinear dynamics and quantifying structural changes in its reconstructed phase space as time evolves. In a first order approximation, the results of recurrence network analysis are invariant to changes in the age model and are not directly affected by non-equidistant sampling of the data. Specifically, we investigate the behaviour of recurrence network measures for both paradigmatic model systems with non-stationary parameters and four marine records of long-term palaeoclimate variations. We show that the obtained results are qualitatively robust under changes of the relevant parameters of our method, including detrending, size of the running window used for analysis, and embedding delay. We demonstrate that recurrence network analysis is able to detect relevant regime shifts in synthetic data as well as in problematic geoscientific time series. This suggests its application as a general exploratory tool of time series analysis complementing existing methods.

The structure of time series and letter sequences is investigated using the concepts of entropy and complexity. First conditional entropy and transinformation are introduced and several generalizations are discussed. Further several measures of complexity are introduced and discussed. The capability of these concepts to describe the structure of time series and letter sequences generated by nonlinear maps, data series from meteorology, astrophysics, cardiology, cognitive psychology and finance is investigated. The relation between the complexity and the predictability of informational strings is discussed. The relation between local order and the predictability of time series is investigated.

We analyse time series from a study on bimanual rhythmic movements in which the speed of performance (the external control parameter) was experimentally manipulated. Using symbolic transformations as a visualization technique we observe qualitative changes in the dynamics of the timing patterns. Such phase transitions are quantitatively described by measures of complexity. Using these results we develop an advanced symbolic coding which enables us to detect important dynamical structures. Furthermore, our analysis raises new questions concerning the modelling of the underlying human cognitive-motor system.

We investigate the cognitive control in polyrhythmic hand movements as a model paradigm for bimanual coordination. Using a symbolic coding of the recorded time series, we demonstrate the existence of qualitative transitions induced by experimental manipulation of the tempo. A nonlinear model with delayed feedback control is proposed, which accounts for these dynamical transitions in terms of bifurcations resulting from variation of the external control parameter. Furthermore, it is shown that transitions can also be observed due to fluctuations in the timing control level. We conclude that the complexity of coordinated bimanual movements results from interactions between nonlinear control mechanisms with delayed feedback and stochastic timing components.

Recurrence-plot-based recurrence networks are an approach used to analyze time series using a complex networks theory. In both approaches - recurrence plots and recurrence networks -, a threshold to identify recurrent states is required. The selection of the threshold is important in order to avoid bias of the recurrence network results. In this paper, we propose a novel method to choose a recurrence threshold adaptively. We show a comparison between the constant threshold and adaptive threshold cases to study period-chaos and even period-period transitions in the dynamics of a prototypical model system. This novel method is then used to identify climate transitions from a lake sediment record.

We study Hamiltonian chaos generated by the dynamics of passive tracers moving in a two-dimensional fluid flow and describe the complex structure formed in a chaotic layer that separates a vortex region from the shear flow. The stable and unstable manifolds of unstable periodic orbits are computed. It is shown that their intersections in the Poincare map as an invariant set of homoclinic points constitute the backbone of the chaotic layer. Special attention is paid to the finite time properties of the chaotic layer. In particular, finite time Lyapunov exponents are computed and a scaling law of the variance of their distribution is derived. Additionally, the box counting dimension as an effective dimension to characterize the fractal properties of the layer is estimated for different duration times of simulation. Its behavior in the asymptotic time limit is discussed. By computing the Lyapunov exponents and by applying methods of symbolic dynamics, the formation of the layer as a function of the external forcing strength, which in turn represents the perturbation of the originally integrable system, is characterized. In particular, it is shown that the capture of KAM tori by the layer has a remarkable influence on the averaged Lyapunov exponents. (C) 2004 Elsevier Ltd. All rights reserved

Experimental evidences point Out the participation of nonsynaptic mechanisms (e.g., fluctuations in extracellular tons) in epileptiform bursting and spreading depression (SD). During these abnormal oscillatory patterns, it is observed an increase of extracellular potassium concentration [K+](o) and a decrease of extracellular calcium concentration [Ca2+](o) which raises the neuronal excitability. However, whether the high [K+](o) triggers and propagates these abnormal neuronal activities or plays a secondary role into this process is unclear. To better understand the influence of extracellular potassium dynamics in these oscillatory patterns, the experimental conditions of high [K+](o) and zero [Ca2+](o) were replicated in an extended Golomb model where we added important regulatory mechanisms of ion concentration as Na+-K+ pump, ion diffusion and glial buffering. Within these Conditions, simulations of the cell model exhibit seizure-like discharges (ictal bursting). The SD was elicited by the interruption of the Na+- K+ pump activity, mimicking the effect of cellular hypoxia (an experimental protocol to elicit SD, the hypoxia-induced SD). We used the bifurcation theory and the fast-slow method to analyze the interference of K+ dynamics in the cellular excitability. This analysis indicates that the system loses its stability at a high [K+](o), transiting to an elevated state of neuronal excitability. Effects of high [K+](o), are observed in different stages of ictal bursting and SD. In the initial stage, the increase of [K+](o) creates favorable conditions to trigger both oscillatory patterns. During the neuronal activity, a continuous growth of [K+](o) by outward K+ flow depresses K+ Currents in a positive feedback way. At the last stage, due to the depression of K+ currents, the Na+-K+ pump is the main mechanism in the end of neuronal activity. Thus, this work suggests that [K+](o) dynamics may play a fundamental role in these abnormal oscillatory patterns.

In this paper, we analytically study a star motif of Stuart-Landau oscillators, derive the bifurcation diagram and discuss the different forms of synchronization arising in such a system. Despite the parameter mismatch between the central node and the peripheral ones, an analytical approach independent of the number of units in the system has been proposed. The approach allows to calculate the separatrices between the regions with distinct dynamical behavior and to determine the nature of the different transitions to synchronization appearing in the system. The theoretical analysis is supported by numerical results.

We employ a spectral decomposition method to analyze synchronization of a non-identical oscillator network. We study the case that a small parameter mismatch of oscillators is characterized by one parameter and phase synchronization is observed. We derive a linearized equation for each eigenmode of the coupling matrix. The parameter mismatch is reflected on inhomogeneous term in the linearized equation. We find that the oscillation of each mode is essentially characterized only by the eigenvalue of the coupling matrix with a suitable normalization. We refer to this property as spectral universality, because it is observed irrespective of network topology. Numerical results in various network topologies show good agreement with those based on linearized equation. This universality is also observed in a system driven by additive independent Gaussian noise.

Linear methods of dimensionality reduction are useful tools for handling and interpreting high dimensional data. However, the cumulative variance explained by each of the subspaces in which the data space is decomposed may show a slow convergence that makes the selection of a proper minimum number of subspaces for successfully representing the variability of the process ambiguous. The use of nonlinear methods can improve the embedding of multivariate data into lower dimensional manifolds. In this article, a nonlinear method for dimensionality reduction, Isomap, is applied to the sea surface temperature and thermocline data in the tropical Pacific Ocean, where the El Nino-Southern Oscillation (ENSO) phenomenon and the annual cycle phenomena interact. Isomap gives a more accurate description of the manifold dimensionality of the physical system. The knowledge of the minimum number of dimensions is expected to improve the development of low dimensional models for understanding and predicting ENSO

Identifying abrupt transitions is a key question in various disciplines. Existing transition detection methods, however, do not rigorously account for time series uncertainties, often neglecting them altogether or assuming them to be independent and qualitatively similar. Here, we introduce a novel approach suited to handle uncertainties by representing the time series as a time-ordered sequence of probability density functions. We show how to detect abrupt transitions in such a sequence using the community structure of networks representing probabilities of recurrence. Using our approach, we detect transitions in global stock indices related to well-known periods of politico-economic volatility. We further uncover transitions in the El Nino-Southern Oscillation which coincide with periods of phase locking with the Pacific Decadal Oscillation. Finally, we provide for the first time an 'uncertainty-aware' framework which validates the hypothesis that ice-rafting events in the North Atlantic during the Holocene were synchronous with a weakened Asian summer monsoon.

We investigate a network of influences connected to global mean temperature. Considering various climatic factors known to influence global mean temperature, we evaluate not only the impacts of these factors on temperature but also the directed dependencies among the factors themselves. Based on an existing recurrence-based connectivity measure, we propose a new and more general measure that quantifies the level of dependence between two time series based on joint recurrences at a chosen time delay. The measures estimated in the analysis are tested for statistical significance using twin surrogates. We find, in accordance with earlier studies, the major drivers for global mean temperature to be greenhouse gases, ENSO, volcanic activity, and solar irradiance. We further uncover a feedback between temperature and ENSO. Our results demonstrate the need to involve multiple, delayed interactions within the drivers of temperature in order to develop a more thorough picture of global temperature variations.

We propose a RAndom Interacting Network (RAIN) model to study the interactions between a pair of complex networks. The model involves two major steps: (i) the selection of a pair of nodes, one from each network, based on intra-network node-based characteristics, and (ii) the placement of a link between selected nodes based on the similarity of their relative importance in their respective networks. Node selection is based on a selection fitness function and node linkage is based on a linkage probability defined on the linkage scores of nodes. The model allows us to relate within-network characteristics to between-network structure. We apply the model to the interaction between the USA and Schengen airline transportation networks (ATNs). Our results indicate that two mechanisms: degree-based preferential node selection and degree-assortative link placement are necessary to replicate the observed inter-network degree distributions as well as the observed inter-network assortativity. The RAIN model offers the possibility to test multiple hypotheses regarding the mechanisms underlying network interactions. It can also incorporate complex interaction topologies. Furthermore, the framework of the RAIN model is general and can be potentially adapted to various real-world complex systems.