### Refine

#### Has Fulltext

- no (265) (remove)

#### Year of publication

#### Document Type

- Article (257)
- Monograph/Edited Volume (8)

#### Keywords

- Complex networks (2)
- 3D medical image analysis (1)
- African climate (1)
- Algebraic geometry (1)
- Bifurcation parameters (1)
- Biomass (1)
- Calvin cycle (1)
- Chaotic System (1)
- Cold air surges (1)
- Convective storms (1)

#### Institute

- Institut für Physik und Astronomie (201)
- Interdisziplinäres Zentrum für Dynamik komplexer Systeme (39)
- Institut für Psychologie (11)
- Institut für Erd- und Umweltwissenschaften (6)
- Institut für Biochemie und Biologie (4)
- Institut für Linguistik / Allgemeine Sprachwissenschaft (3)
- Department Psychologie (2)
- Institut für Geowissenschaften (2)
- Institut für Informatik und Computational Science (1)
- Institut für Sportmedizin und Prävention (1)

We propose a new autonomous dynamical system of dimension N=4 that demonstrates the regime of stable two- frequency motions and period-doubling bifurcations of a two-dimensional torus. It is shown that the period-doubling bifurcation of the two-dimensional torus is not followed by the resonance phenomenon, and the two-dimensional ergodic torus undergoes a period-doubling bifurcation. The interaction of two generators is also analyzed. The phenomenon of external and mutual synchronization of two-frequency oscillations is observed, for which winding number locking on a two- dimensional torus takes place

We report on the effect of vibrational resonance in a spatially extended system of coupled noisy oscillators under the action of two periodic forces, a low-frequency one (signal) and a high-frequency one (carrier). Vibrational resonance manifests itself in the fact that for optimally selected values of high-frequency force amplitude, the response of the system to a low-frequency signal is optimal. This phenomenon is a synthesis of two effects, a noise- induced phase transition leading to bistability, and a conventional vibrational resonance, resulting in the optimization of signal processing. Numerical simulations, which demonstrate this effect for an extended system, can be understood by means of a zero-dimensional "effective" model. The behavior of this "effective" model is also confirmed by an experimental realization of an electronic circuit.

We investigate the relationship between the loss of synchronization and the onset of shadowing breakdown via unstable dimension variability in complex systems. In the neighborhood of the critical transition to strongly nonhyperbolic behavior, the system undergoes on-off intermittency with respect to the synchronization state. There are potentially severe consequences of these facts on the validity of the computer-generated trajectories obtained from dynamical systems whose synchronization manifolds share the same nonhyperbolic properties

An approach is presented for coupled chaotic systems with weak coherent motion, from which we estimate the upper bound value for the absolute phase difference in phase synchronous states. This approach shows that synchronicity in phase implies synchronicity in the time of events, a characteristic explored to derive an equation to detect phase synchronization, based on the absolute difference between the time of these events. We demonstrate the potential use of this approach for the phase coherent and the funnel attractor of the Rossler system, as well as for the spiking/bursting Rulkov map.

Untitled
(2004)

Background: Inferring regulatory interactions between genes from transcriptomics time-resolved data, yielding reverse engineered gene regulatory networks, is of paramount importance to systems biology and bioinformatics studies. Accurate methods to address this problem can ultimately provide a deeper insight into the complexity, behavior, and functions of the underlying biological systems. However, the large number of interacting genes coupled with short and often noisy time-resolved read-outs of the system renders the reverse engineering a challenging task. Therefore, the development and assessment of methods which are computationally efficient, robust against noise, applicable to short time series data, and preferably capable of reconstructing the directionality of the regulatory interactions remains a pressing research problem with valuable applications.
Results: Here we perform the largest systematic analysis of a set of similarity measures and scoring schemes within the scope of the relevance network approach which are commonly used for gene regulatory network reconstruction from time series data. In addition, we define and analyze several novel measures and schemes which are particularly suitable for short transcriptomics time series. We also compare the considered 21 measures and 6 scoring schemes according to their ability to correctly reconstruct such networks from short time series data by calculating summary statistics based on the corresponding specificity and sensitivity. Our results demonstrate that rank and symbol based measures have the highest performance in inferring regulatory interactions. In addition, the proposed scoring scheme by asymmetric weighting has shown to be valuable in reducing the number of false positive interactions. On the other hand, Granger causality as well as information-theoretic measures, frequently used in inference of regulatory networks, show low performance on the short time series analyzed in this study.
Conclusions: Our study is intended to serve as a guide for choosing a particular combination of similarity measures and scoring schemes suitable for reconstruction of gene regulatory networks from short time series data. We show that further improvement of algorithms for reverse engineering can be obtained if one considers measures that are rooted in the study of symbolic dynamics or ranks, in contrast to the application of common similarity measures which do not consider the temporal character of the employed data. Moreover, we establish that the asymmetric weighting scoring scheme together with symbol based measures (for low noise level) and rank based measures (for high noise level) are the most suitable choices.

Realistic networks display not only a complex topological structure, but also a heterogeneous distribution of weights in the connection strengths. Here we study synchronization in weighted complex networks and show that the synchronizability of random networks with a large minimum degree is determined by two leading parameters: the mean degree and the heterogeneity of the distribution of node's intensity, where the intensity of a node, defined as the total strength of input connections, is a natural combination of topology and weights. Our results provide a possibility for the control of synchronization in complex networks by the manipulation of a few parameters

We present an approach to generate (multivariate) twin surrogates (TS) based on recurrence properties. This technique generates surrogates which correspond to an independent copy of the underlying system, i.e. they induce a trajectory of the underlying system starting at different initial conditions. We show that these surrogates are well suited to test for complex synchronisation and exemplify this for the paradigmatic system of Rossler oscillators. The proposed test enables to assess the statistical relevance of a synchronisation analysis from passive experiments which are typical in natural systems

The transition from fully synchronized behavior to two-cluster dynamics is investigated for a system of N globally coupled chaotic oscillators by means of a model of two coupled logistic maps. An uneven distribution of oscillators between the two clusters causes an asymmetry to arise in the coupling of the model system. While the transverse period-doubling bifurcation remains essentially unaffected by this asymmetry, the transverse pitchfork bifurcation is turned into a saddle-node bifurcation followed by a transcritical riddling bifurcation in which a periodic orbit embedded in the synchronized chaotic state loses its transverse stability. We show that the transcritical riddling transition is always hard. For this, we study the sequence of bifurcations that the asynchronous point cycles produced in the saddle-node bifurcation undergo, and show how the manifolds of these cycles control the magnitude of asynchronous bursts. In the case where the system involves two subpopulations of oscillators with a small mismatch of the parameters, the transcritical riddling will be replaced by two subsequent saddle-node bifurcations, or the saddle cycle involved in the transverse destabilization of the synchronized chaotic state may smoothly shift away from the synchronization manifold. In this way, the transcritical riddling bifurcation is substituted by a symmetry-breaking bifurcation, which is accompanied by the destruction of a thin invariant region around the symmetrical chaotic state.

This paper employs a complex network approach to determine the topology and evolution of the network of extreme precipitation that governs the organization of extreme rainfall before, during, and after the Indian Summer Monsoon (ISM) season. We construct networks of extreme rainfall events during the ISM (June-September), post-monsoon (October-December), and pre-monsoon (March-May) periods from satellite-derived (Tropical Rainfall Measurement Mission, TRMM) and rain-gauge interpolated (Asian Precipitation Highly Resolved Observational Data Integration Towards the Evaluation of Water Resources, APHRODITE) data sets. The structure of the networks is determined by the level of synchronization of extreme rainfall events between different grid cells throughout the Indian subcontinent. Through the analysis of various complex-network metrics, we describe typical repetitive patterns in North Pakistan (NP), the Eastern Ghats (EG), and the Tibetan Plateau (TP). These patterns appear during the pre-monsoon season, evolve during the ISM, and disappear during the post-monsoon season. These are important meteorological features that need further attention and that may be useful in ISM timing and strength prediction.

We apply the recently developed symbolic resonance analysis to electroencephalographic measurements of event- related brain potentials (ERPs) in a language processing experiment by using a three-symbol static encoding with varying thresholds for analyzing the ERP epochs, followed by a spin-flip transformation as a nonlinear filter. We compute an estimator of the signal-to-noise ratio (SNR) for the symbolic dynamics measuring the coherence of threshold-crossing events. Hence, we utilize the inherent noise of the EEG for sweeping the underlying ERP components beyond the encoding thresholds. Plotting the SNR computed within the time window of a particular ERP component (the N400) against the encoding thresholds, we find different resonance curves for the experimental conditions. The maximal differences of the SNR lead to the estimation of optimal encoding thresholds. We show that topographic brain maps of the optimal threshold voltages and of their associated coherence differences are able to dissociate the underlying physiological processes, while corresponding maps gained from the customary voltage averaging technique are unable to do so

Three-dimensional quantification of structures in trabecular bone using measures of complexity
(2009)

The study of pathological changes of bone is an important task in diagnostic procedures of patients with metabolic bone diseases such as osteoporosis as well as in monitoring the health state of astronauts during long-term space flights. The recent availability of high-resolution three-dimensional (3D) imaging of bone challenges the development of data analysis techniques able to assess changes of the 3D microarchitecture of trabecular bone. We introduce an approach based on spatial geometrical properties and define structural measures of complexity for 3D image analysis. These measures evaluate different aspects of organization and complexity of 3D structures, such as complexity of its surface or shape variability. We apply these measures to 3D data acquired by high-resolution microcomputed tomography (mu CT) from human proximal tibiae and lumbar vertebrae at different stages of osteoporotic bone loss. The outcome is compared to the results of conventional static histomorphometry and exhibits clear relationships between the analyzed geometrical features of trabecular bone and loss of bone density, but also indicate that the measures reveal additional information about the structural composition of bone, which were not revealed by the static histomorphometry. Finally, we have studied the dependency of the developed measures of complexity on the spatial resolution of the mu CT data sets.

We study possible interrelations between the 300-year record of the yearly sunspot numbers and the solar inertial motion (SIM) using the recently developed technique of synchronization analysis. Phase synchronization of the sunspot cycle and the SIM is found and statistically confirmed in three epochs (1734-1790, 1855-1875 and 1907-1960) of the whole period 1700-2000. These results give quantitative support to the hypothesis that there is a weak interaction between the solar activity and the SIM.

Experimental evidences point Out the participation of nonsynaptic mechanisms (e.g., fluctuations in extracellular tons) in epileptiform bursting and spreading depression (SD). During these abnormal oscillatory patterns, it is observed an increase of extracellular potassium concentration [K+](o) and a decrease of extracellular calcium concentration [Ca2+](o) which raises the neuronal excitability. However, whether the high [K+](o) triggers and propagates these abnormal neuronal activities or plays a secondary role into this process is unclear. To better understand the influence of extracellular potassium dynamics in these oscillatory patterns, the experimental conditions of high [K+](o) and zero [Ca2+](o) were replicated in an extended Golomb model where we added important regulatory mechanisms of ion concentration as Na+-K+ pump, ion diffusion and glial buffering. Within these Conditions, simulations of the cell model exhibit seizure-like discharges (ictal bursting). The SD was elicited by the interruption of the Na+- K+ pump activity, mimicking the effect of cellular hypoxia (an experimental protocol to elicit SD, the hypoxia-induced SD). We used the bifurcation theory and the fast-slow method to analyze the interference of K+ dynamics in the cellular excitability. This analysis indicates that the system loses its stability at a high [K+](o), transiting to an elevated state of neuronal excitability. Effects of high [K+](o), are observed in different stages of ictal bursting and SD. In the initial stage, the increase of [K+](o) creates favorable conditions to trigger both oscillatory patterns. During the neuronal activity, a continuous growth of [K+](o) by outward K+ flow depresses K+ Currents in a positive feedback way. At the last stage, due to the depression of K+ currents, the Na+-K+ pump is the main mechanism in the end of neuronal activity. Thus, this work suggests that [K+](o) dynamics may play a fundamental role in these abnormal oscillatory patterns.

We present different tests for phase synchronization which improve the procedures currently used in the literature. This is accomplished by using a two-sample test setup and by utilizing insights and methods from directional statistics and bootstrap theory. The tests differ in the generality of the situation in which they can be applied as well as in their complexity, including computational cost. A modification of the resampling technique of the bootstrap is introduced, making it possible to fully utilize data from time series

The radiocarbon record that has been extended from 7199 BC to 1891 AD is of fundamental importance to understand century-scale variations of solar activity. We have, therefore, studied how to extract information from dynamic reconstructions of this observational record. Using some rather unusual methods of nonlinear dynamics, we have found that the data are significantly different from linear colored noise and that there is some evidence of nonlinear behavior. The method of recurrence plots exhibits that the grand minima of solar activity are quite different in their recurrence. Most remarkably, it suggests that the recent epoch seems to be similar to the Medieval maximum.

The investigation of foetal reaction to internal and external conditions and stimuli is an important tool in the characterization of the developing neural integration of the foetus. An interesting example of this is the study of the interrelationship between the foetal and the maternal heart rate. Recent studies have shown a certain likelihood of occasional heart rate synchronization between mother and foetus. In the case of respiratory-induced heart rate changes, the comparison with maternal surrogates suggests that the evidence for detected synchronization is largely statistical and does not result from physiological interaction. Rather, they simply reflect a stochastic, temporary stability of two independent oscillators with time-variant frequencies. We reanalysed three datasets from that study for a more local consideration. Epochs of assumed synchronization associated with short-term regulation of the foetal heart rate were selected and compared with synchronization resulting from white noise instead of the foetal signal. Using data-driven modelling analysis, it was possible to identify the consistent influence of the heartbeat duration of maternal beats preceding the foetal beats during epochs of synchronization. These maternal beats occurred approximately one maternal respiratory cycle prior to the affected foetal beat. A similar effect could not be found in the epochs without synchronization. Simulations based on the fitted models led to a higher likelihood of synchronization in the data segments with assumed foetal-maternal interaction than in the segment without such assumed interaction. We conclude that the data-driven model-based analysis can be a useful tool for the identification of synchronization.

We investigate the cognitive control in polyrhythmic hand movements as a model paradigm for bimanual coordination. Using a symbolic coding of the recorded time series, we demonstrate the existence of qualitative transitions induced by experimental manipulation of the tempo. A nonlinear model with delayed feedback control is proposed, which accounts for these dynamical transitions in terms of bifurcations resulting from variation of the external control parameter. Furthermore, it is shown that transitions can also be observed due to fluctuations in the timing control level. We conclude that the complexity of coordinated bimanual movements results from interactions between nonlinear control mechanisms with delayed feedback and stochastic timing components.

Synthetic multicellular oscillatory systems controlling protein dynamics with genetic circuits
(2011)

Synthetic biology is a relatively new research discipline that combines standard biology approaches with the constructive nature of engineering. Thus, recent efforts in the field of synthetic biology have given a perspective to consider cells as 'programmable matter'. Here, we address the possibility of using synthetic circuits to control protein dynamics. In particular, we show how intercellular communication and stochasticity can be used to manipulate the dynamical behavior of a population of coupled synthetic units and, in this manner, finely tune the expression of specific proteins of interest, e.g. in large bioreactors.

We investigate the influence of noise on synchronization between the spiking activities of neurons with external impulsive forces. We first analyze the dependence of the synchronized firing on the amplitude and the angular frequency of the impulsive force in the noise-free system. Three cases (regular spiking, traveling wave, and chaotic spiking) with low synchronized firing are chosen to study effects due to noise. In each case we find that small noise can be a promoter of synchronization phenomena in neural activities, by choosing an appropriate noise intensity acting on some of the neurons. (C) 2005 American Institute of Physics

We study phase synchronization effects in a chain of nonidentical chaotic oscillators with a type-I intermittent behavior. Two types of parameter distribution, linear and random, are considered. The typical phenomena are the onset and existence of global (all-to-all) and cluster (partial) synchronization with increase of coupling. Increase of coupling strength can also lead to desynchronization phenomena, i.e., global or cluster synchronization is changed into a regime where synchronization is intermittent with incoherent states. Then a regime of a fully incoherent nonsynchronous state (spatiotemporal intermittency) appears. Synchronization-desynchronization transitions with increase of coupling are also demonstrated for a system resembling an intermittent one: a chain of coupled maps replicating the spiking behavior of neurobiological networks

Synchronization transitions in coupled time-delay electronic circuits with a threshold nonlinearity
(2011)

Experimental observations of typical kinds of synchronization transitions are reported in unidirectionally coupled time-delay electronic circuits with a threshold nonlinearity and two time delays, namely feedback delay tau(1) and coupling delay tau(2). We have observed transitions from anticipatory to lag via complete synchronization and their inverse counterparts with excitatory and inhibitory couplings, respectively, as a function of the coupling delay tau(2). The anticipating and lag times depend on the difference between the feedback and the coupling delays. A single stability condition for all the different types of synchronization is found to be valid as the stability condition is independent of both the delays. Further, the existence of different kinds of synchronizations observed experimentally is corroborated by numerical simulations and from the changes in the Lyapunov exponents of the coupled time-delay systems.

Being one of the fundamental phenomena in nonlinear science, synchronization of oscillations has permanently remained an object of intensive research. Development of many asymptotic methods and numerical simulations has allowed an understanding and explanation of various phenomena of self-synchronization. But even in the classical case of coupled van der Pol oscillators a full description of all possible dynamical regimes, their mutual transitions and characteristics is still lacking. We present here a study of the phenomenon of mutual synchronization for two non-scalar- coupled non-identical limit-cycle oscillators and analyze phase, frequency and amplitude characteristics of synchronization regimes. A series of bifurcation diagrams that we obtain exhibit various regions of qualitatively different behavior. Among them we find mono-, bi- and multistability regions, beating and "oscillation death" ones; also a region, where one of the oscillators dominates the other one is observed. The frequency characteristics that we obtain reveal three qualitatively different types of synchronization: (i) on the mean frequency (the in-phase synchronization), (ii) with a shift from the mean frequency caused by a conservative coupling term (the anti-phase synchronization), and (iii) on the frequency of one of the oscillators (when one oscillator dominates the other). (C) 2003 Elsevier B.V. All rights reserved

We analyze synchronization between two interacting populations of different phase oscillators. For the important case of asymmetric coupling functions, we find a much richer dynamical behavior compared to that of symmetrically coupled populations of identical oscillators. It includes three types of bistabilities, higher order entrainment and the existence of states with unusual stability properties. All possible routes to synchronization of the populations are presented and some stability boundaries are obtained analytically. The impact of these findings for neuroscience is discussed.

In the present paper, two kinds of dynamical complex networks are considered. The first is that elements of every node have different time delays but all nodes in Such networks have the same time-delay vector. The second is that different nodes have different time-delay vectors, and the elements of each node also have different time delays. Corresponding synchronization theorems are established. Numerical examples show the efficiency of the derived theorems.

In this paper, we study the complete synchronization of a class of time-varying delayed coupled chaotic systems using feedback control. In terms of Linear Matrix Inequalities, a sufficient condition is obtained through using a Lyapunov-Krasovskii functional and differential equation in equalities. The conditions can be easily verified and implemented. We present two simulation examples to illustrate the effectiveness of the proposed method.

Starting from an initial wiring of connections, we show that the synchronizability of a network can be significantly improved by evolving the graph along a time dependent connectivity matrix. We consider the case of connectivity matrices that commute at all times, and compare several approaches to engineer the corresponding commutative graphs. In particular, we show that synchronization in a dynamical network can be achieved even in the case in which each individual commutative graphs does not give rise to synchronized behavior

In this article we review the application of the synchronization theory to the analysis of multivariate biological signals. We address the problem of phase estimation from data and detection and quantification of weak interaction, as well as quantification of the direction of coupling. We discuss the potentials as well as limitations and misinterpretations of the approach

We present two different approaches to detect and quantify phase synchronization in the case of coupled non- phase coherent oscillators. The first one is based on the general idea of curvature of an arbitrary curve. The second one is based on recurrences of the trajectory in phase space. We illustrate both methods in the paradigmatic example of the Rossler system in the funnel regime. We show that the second method is applicable even in the case of noisy data. Furthermore, we extend the second approach to the application of chains of coupled systems, which allows us to detect easily clusters of synchronized oscillators. In order to illustrate the applicability of this approach, we show the results of the algorithm applied to experimental data from a population of 64 electrochemical oscillators