### Refine

#### Has Fulltext

- no (265) (remove)

#### Year of publication

#### Document Type

- Article (257)
- Monograph/Edited Volume (8)

#### Keywords

- Complex networks (2)
- 3D medical image analysis (1)
- African climate (1)
- Algebraic geometry (1)
- Bifurcation parameters (1)
- Biomass (1)
- Calvin cycle (1)
- Chaotic System (1)
- Cold air surges (1)
- Convective storms (1)

#### Institute

- Institut für Physik und Astronomie (201)
- Interdisziplinäres Zentrum für Dynamik komplexer Systeme (39)
- Institut für Psychologie (11)
- Institut für Erd- und Umweltwissenschaften (6)
- Institut für Biochemie und Biologie (4)
- Institut für Linguistik / Allgemeine Sprachwissenschaft (3)
- Department Psychologie (2)
- Institut für Geowissenschaften (2)
- Institut für Informatik und Computational Science (1)
- Institut für Sportmedizin und Prävention (1)

Using quantities of symbolic dynamics, such as mutual information, Shannon information and algorithmic complexity, we have searched for interrelations of spikes emitted simultaneously at different frequencies during the impulsive phase of a flare event. As the spikes are related to the flare energy release and are interpreted as emissions originating at different sites having different magnetic field strengths, any relation in frequency is interpretated as a relation in space. This approach is appropriate to characterize such spatio-temporal patterns, whereas the popular estimate of fractal dimensions can be applied to low-dimensional systems only. Depending on the energy release and emission processes, two types of fragmentation are possible: a scenario of global organization (spikes are emitted in a succession of similar events by the same system) or a scenario of local organization (many systems triggered by an initial event). Mutual information which is a generalization of correlation indicates a relation in frequency beyond the bandwidth of individual spikes. The scans in the spectrograms with large mutual information also show a low level of Shannon information and algorithmic complexity, indicating that the simultaneous appearance of spikes at other frequencies is not a completely stochastic phenomenon (white noise). It may be caused by a nonlinear deterministic system or by a Markov process. By means of mutual information we find a memory over frequency intervals up to 60 MHz. Shannon information and algorithmic complexity concern the mbox{whole} frequency region, i.e. the global source region. A global organization is also apparent in quasi-periodic changes of the Shannon information and algorithmic complexity in the range of 2 - 8 seconds. The finding is compatible with a scenario of local organization in which the information of one event spreads spatially and triggers further events at different places. The region is not an ensemble of independently flashing sources, each representing a system that cascades in energy after an initial trigger. On the contrary, there is a causal connection between the sources at any time. The analysis of the four spike events suggests that the structure in frequency is not stochastic but a process in which spikes at nearby locations are simultaneously triggered by a common exciter.

We look for structural properties in the light curve of the dwarf nova SS Cyg by means of techniques from nonlinear dynamics. Applying the popular Grassberger-Procaccia procedure, Cannizzo and Goddings (1988) showed that there is no evidence for a low-dimensional attractor underlying this record. Because there are some hints for order in the light curve, we search for other signatures of deterministic systems. Therefore, we use other methods recently developed in this theory, such as local linear prediction and recurrence maps. Our main findings are: i] the prediction error grows exponentially during outburst phases, but via a power law in the quiescent states, ii] there are some rather regular patterns in this light curve which sometimes recur, but the recurrence is not regular. This leads to the following conclusions: i] The outburst dynamics shows a higher degree of order than the quiescent one. There are some hints for deterministic chaos in the outburst behavior. ii] The light curve is a complex mixture of deterministic and stochastic structures. The analysis presented in this paper shows that methods of nonlinear dynamics can be an efficient tool for the study of complex processes, even if there is no evidence for a low-dimensional attractor.

The application of chaos theory has become popular to understand the nature of various features of solar activity because most of them are far from regular. The usual approach, however, that is basing on finding low- dimensional structures of the underlying processes seems to be successful only in a few exceptional cases, such as in rather coherent phenomena as coronal pulsations. It is important to note that most phenomena in solar radio emission are more complex. We present two kinds of techniques from nonlinear dynamics which can be useful to analyse such phenomena: i] Fragmentation processes observed in solar spike events are studied by means of symbolic dynamics methods. Different measures of complexity calculated from such observations reveal that there is some order in this fragmentation. ii] Bursts are a typical transient phenomenon. To study energization processes causing impulsive microwave bursts, the wavelet analysis is applied. It exhibits structural differences of the pre- and post-impulsive phase in cases where the power spectra of both are not distinct.

The radiocarbon record that has been extended from 7199 BC to 1891 AD is of fundamental importance to understand century-scale variations of solar activity. We have, therefore, studied how to extract information from dynamic reconstructions of this observational record. Using some rather unusual methods of nonlinear dynamics, we have found that the data are significantly different from linear colored noise and that there is some evidence of nonlinear behavior. The method of recurrence plots exhibits that the grand minima of solar activity are quite different in their recurrence. Most remarkably, it suggests that the recent epoch seems to be similar to the Medieval maximum.

We have discussed some tools from nonlinear dynamics which may help to analyze transient phenomena, such as solar bursts. The structure function known from turbulence theory is an appropriate method to find out some scaling behavior of fluctuations in time. More generally, the wavelet analysis, which is some generalization of the power spectrum, exhibits information on the location as well as the size of hidden characteristic features. Applying both techniques to microwave bursts, we have found some scaling properties that refer to the existence of hierarchic time structures. This is in good accordance with the electric circuit model for describing the flare-particle energization process.

In this paper we apply symbolic transformations as a visualisation technique for analysing rhythm production. It is shown that qualitative information can be extracted from the experimental data. This approach may provide new insights into the organisation of temporal order by the brain on different levels of description. A simple phenomenological model for the explanation of the observed phenomena is proposed.

Using a special technique of data analysis, we have found out 34 grand minima of solar activity in a 7,700 years long C14 record. The method used rests on a proper filtering of the C14 record and the extrapolation of verifiable results for the later history back in time. Additionally, we have applied a method of nonlinear dynamics, the recurrence rate, to back up the results. Our findings are not contradictory to the record of grand minima by Eddy, but constitute a considerable extension. Hence, it has become possible to look closer at the validity of models. This way, we have tested esp. the model of Barnes et al. There are hints for that the grand minima might solely be driven by the 209--year period found in the C14 record.

We investigate the cognitive control in polyrhythmic hand movements as a model paradigm for bimanual coordination. Using a symbolic coding of the recorded time series, we demonstrate the existence of qualitative transitions induced by experimental manipulation of the tempo. A nonlinear model with delayed feedback control is proposed, which accounts for these dynamical transitions in terms of bifurcations resulting from variation of the external control parameter. Furthermore, it is shown that transitions can also be observed due to fluctuations in the timing control level. We conclude that the complexity of coordinated bimanual movements results from interactions between nonlinear control mechanisms with delayed feedback and stochastic timing components.

We study synchronization transitions in a system of two coupled self-sustained chaotic oscillators. We demonstrate that with the increase of coupling strength the system first undergoes the transition to phase synchronization. With a further increase of coupling, a new synchronous regime is observed, where the states of two oscillators are nearly identical, but one system lags in time to the other. We describe thisregime as a state with correlated amplitudes and a constant phase shift. These transitions are traced in the Lyapunov spectrum.

Attractor-repeller collision and eyelet intermittency at the transition to phase synchronization
(1997)

The chaotically driven circle map is considered as the simplest model ofphase synchronization of a chaotic continuous-time oscillator by external periodic force. The phase dynamics is analyzed via phase-locking regions of the periodic cycles embedded in the strange attractor. It is shown that full synchronization, where all the periodic cycles are phase locked, disappears via the attractor-repeller collision. Beyond the transition an intermittent regime with exponentially rare phase slips, resulting from the trajectory's hits on an eyelet, is observed.

Reconstruction of nonlinear time delay models from data by the use of optimal transformations
(1997)

We study the dynamics of the excitable Fitz Hugh-Nagumo system under external noisy driving. Noise activates the system producing a sequence of pulses. The coherence of these noise-induced oscillations is shown to be maximal for a certain noise amplitude. This new effect of coherence resonance is explained by different noise dependencies of the activation and the excursion times. A simple one-dimensional model based on the Langevin dynamics is proposed for the quantitative description of this phenomenon.

Control of noise-induced oscillations of a pendulum with a rondomly vibrating suspension axis
(1997)

We use the concept of phase synchronization for the analysis of noisy nonstationary bivariate data. Phase synchronization is understood in a statistical sense as an existence of preferred values of the phase difference, and two techniques are proposed for a reliable detection of synchronous epochs. These methods are applied to magnetoencephalograms and records of muscle activity of a Parkinsonian patient. We reveal that