Refine
Year of publication
- 2020 (22)
- 2019 (62)
- 2018 (32)
- 2017 (51)
- 2016 (84)
- 2015 (75)
- 2014 (58)
- 2013 (40)
- 2012 (61)
- 2011 (52)
- 2010 (28)
- 2009 (39)
- 2008 (13)
- 2007 (14)
- 2006 (32)
- 2005 (42)
- 2004 (39)
- 2003 (31)
- 2002 (17)
- 2001 (25)
- 2000 (27)
- 1999 (21)
- 1998 (13)
- 1997 (14)
- 1996 (5)
- 1995 (18)
- 1994 (17)
- 1993 (4)
- 1992 (1)
- 1991 (2)
- 1989 (1)
- 1988 (1)
- 1987 (1)
- 1982 (1)
Document Type
- Article (560)
- Doctoral Thesis (238)
- Postprint (68)
- Conference Proceeding (32)
- Review (23)
- Other (11)
- Monograph/edited volume (8)
- Habilitation (3)
- Preprint (2)
- Master's Thesis (1)
Keywords
- inflammation (15)
- Biomarker (11)
- obesity (10)
- oxidative stress (9)
- carotenoids (7)
- retinol (7)
- selenium (7)
- Geschmack (6)
- LC-MS/MS (6)
- NASH (6)
Institute
- Institut für Ernährungswissenschaft (946) (remove)
Birth weight variation is influenced by fetal and maternal genetic and non-genetic factors, and has been reproducibly associated with future cardio-metabolic health outcomes. In expanded genome-wide association analyses of own birth weight (n = 321,223) and offspring birth weight (n = 230,069 mothers), we identified 190 independent association signals (129 of which are novel). We used structural equation modeling to decompose the contributions of direct fetal and indirect maternal genetic effects, then applied Mendelian randomization to illuminate causal pathways. For example, both indirect maternal and direct fetal genetic effects drive the observational relationship between lower birth weight and higher later blood pressure: maternal blood pressure-raising alleles reduce offspring birth weight, but only direct fetal effects of these alleles, once inherited, increase later offspring blood pressure. Using maternal birth weight-lowering genotypes to proxy for an adverse intrauterine environment provided no evidence that it causally raises offspring blood pressure, indicating that the inverse birth weight-blood pressure association is attributable to genetic effects, and not to intrauterine programming.
Metabolic footprint and intestinal microbial changes in response to dietary proteins in a pig model
(2019)
Epidemiological studies revealed that dietary proteins can contribute to the modulation of the cardiovascular disease risk. Still, direct effects of dietary proteins on serum metabolites and other health-modulating factors have not been fully explored. Here, we compared the effects of dietary lupin protein with the effects of beef protein and casein on the serum metabolite profile, cardiovascular risk markers and the fecal microbiome. Pigs were fed diets containing 15% of the respective proteins for 4 weeks. A classification analysis of the serum metabolites revealed six biomarker sets of two metabolites each that discriminated between the intake of lupin protein, lean beef or casein. These biomarker sets included 1- and 3-methylhistidine, betaine, carnitine, homoarginine and methionine. The study revealed differences in the serum levels of the metabolites 1- and 3- methylhistidine, homoarginine, methionine and homocysteine, which are involved in the one-carbon cycle. However, these changes were not associated with differences in the methylation capacity or the histone methylation pattern. With the exception of serum homocysteine and homoarginine levels, other cardiovascular risk markers, such as the homeostatic model assessment index, trimethylamine-N-oxide and lipids, were not influenced by the dietary protein source. However, the composition of the fecal microorganisms was markedly changed by the dietary protein source. Lupin-protein-fed pigs exhibited more species from the phyla Bacteroidetes and Firmicutes than the other two groups. In conclusion, different dietary protein sources induce distinct serum metabolic fingerprints, have an impact on the cardiovascular risk and modulate the composition of the fecal microbiome. (C) 2019 Elsevier Inc. All rights reserved.
The knowledge of transformation pathways and identification of transformation products (TPs) of veterinary drugs is important for animal health, food, and environmental matters. The active agent Monensin (MON) belongs to the ionophore antibiotics and is widely used as a veterinary drug against coccidiosis in broiler farming. However, no electrochemically (EC) generated TPs of MON have been described so far. In this study, the online coupling of EC and mass spectrometry (MS) was used for the generation of oxidative TPs. EC-conditions were optimized with respect to working electrode material, solvent, modifier, and potential polarity. Subsequent LC/HRMS (liquid chromatography/high resolution mass spectrometry) and MS/MS experiments were performed to identify the structures of derived TPs by a suspected target analysis. The obtained EC-results were compared to TPs observed in metabolism tests with microsomes and hydrolysis experiments of MON. Five previously undescribed TPs of MON were identified in our EC/MS based study and one TP, which was already known from literature and found by a microsomal assay, could be confirmed. Two and three further TPs were found as products in microsomal tests and following hydrolysis, respectively. We found decarboxylation, O-demethylation and acid-catalyzed ring-opening reactions to be the major mechanisms of MON transformation.
Treatment of caenorhabditis elegans with small selenium species enhances antioxidant defense systems
(2019)
ScopeSmall selenium (Se) species play a key role in Se metabolism and act as dietary sources of the essential trace element. However, they are redox-active and trigger pro- and antioxidant responses. As health outcomes are strongly species-dependent, species-specific characteristics of Se compounds are tested in vivo. Methods and resultsIn the model organism Caenorhabditis elegans (C. elegans), immediate and sustained effects of selenite, selenomethionine (SeMet), and Se-methylselenocysteine (MeSeCys) are studied regarding their bioavailability, incorporation into proteins, as well as modulation of the cellular redox status. While all tested Se compounds are bioavailable, only SeMet persistently accumulates and is non-specifically incorporated into proteins. However, the protection toward chemically-induced formation of reactive species is independent of the applied Se compound. Increased thioredoxin reductase (TXNRD) activity and changes in mRNA expression levels of antioxidant proteins indicate the activation of cellular defense mechanisms. However, in txnrd-1 deletion mutants, no protective effects of the Se species are observed anymore, which is also reflected by differential gene expression data. ConclusionSe species protect against chemically-induced reactive species formation. The identified immediate and sustained systemic effects of Se species give rise to speculations on possible benefits facing subsequent periods of inadequate Se intake.
Boron (B) compounds are essential for plants and animals and beneficial for humans in nutritional amounts. I animals and humans increasing evidence have shown beneficial effects on B compounds on nutrition and on antioxidant status. The genotoxic effects of environmental B exposure in women living in boron-rich and boronpoor areas was examined in this study. For this purpose, the DNA damage in the lymphocytes and buccal cells of females were assessed by Comet and micronucleus (MN) assays respectively. No significant difference was observed in the DNA damage of the lymphocytes of B exposed groups of female volunteers in Comet assay. Even buccal micronucleus (MN) frequency observed in the high exposure group was significantly lower than the low exposure group (p < 0.05). The results of this study came to the same conclusions of the previous studies that boron does not induce DNA damage even under extreme exposure conditions.
Chronic psychosocial stress adversely affects human morbidity and is a risk factor for inflammatory disorders, liver diseases, obesity, metabolic syndrome, and major depressive disorder (MDD). In recent studies, we found an association of MDD with an increase of acid sphingomyelinase (ASM) activity. Thus, we asked whether chronic psychosocial stress as a detrimental factor contributing to the emergence of MDD would also affect ASM activity and sphingolipid (SL) metabolism. To induce chronic psychosocial stress in male mice we employed the chronic subordinate colony housing (CSC) paradigm and compared them to non-stressed single housed control (SHC) mice. We determined Asm activity in liver and serum, hepatic SL concentrations as well as hepatic mRNA expression of genes involved in SL metabolism. We found that hepatic Asm activity was increased by 28% (P = 0.006) and secretory Asm activity by 47% (P = 0.002) in stressed mice. C16:0-Cer was increased by 40% (P = 0.008). Gene expression analysis further revealed an increased expression of tumor necrosis factor (TNF)-alpha (P = 0.009) and of several genes involved in SL metabolism (Cers5, P = 0.028; Cers6, P = 0.045; Gba, P = 0.049; Gba2, P = 0.030; Ormdl2, P = 0.034; Smpdl3B; P = 0.013). Our data thus provides first evidence that chronic psychosocial stress, at least in mice, induces alterations in SL metabolism, which in turn might be involved in mediating the adverse health effects of chronic psychosocial stress and peripheral changes occurring in mood disorders.
Aims: The MARLINA-T2D study (ClinicalTrials. gov, NCT01792518) was designed to investigate the glycaemic and renal effects of linagliptin added to standard-of-care in individuals with type 2 diabetes and albuminuria. Methods: A total of 360 individuals with type 2 diabetes, HbA1c 6.5% to 10.0% (48-86 mmol/ mol), estimated glomerular filtration rate (eGFR) >= 30 mL/min/1.73 m(2) and urinary albumin-tocreatinine ratio (UACR) 30-3000 mg/g despite single agent renin-angiotensin-system blockade were randomized to double-blind linagliptin (n = 182) or placebo (n = 178) for 24 weeks. The primary and key secondary endpoints were change from baseline in HbA1c at week 24 and time-weighted average of percentage change from baseline in UACR over 24 weeks, respectively. Results: Baseline mean HbA1c and geometric mean (gMean) UACR were 7.8% +/- 0.9% (62.2 +/- 9.6 mmol/mol) and 126 mg/g, respectively; 73.7% and 20.3% of participants had microalbuminuria or macroalbuminuria, respectively. After 24 weeks, the placebo-adjusted mean change in HbA1c from baseline was -0.60% (-6.6 mmol/mol) (95% confidence interval [CI], -0.78 to -0.43 [-8.5 to -4.7 mmol/mol]; P <.0001). The placebo-adjusted gMean for time-weighted average of percentage change in UACR from baseline was -6.0% (95% CI, -15.0 to 3.0; P =.1954). The adverse-event profile, including renal safety and change in eGFR, was similar between the linagliptin and placebo groups. Conclusions: In individuals at early stages of diabetic kidney disease, linagliptin significantly improved glycaemic control but did not significantly lower albuminuria. There was no significant change in placebo-adjusted eGFR. Detection of clinically relevant renal effects of linagliptin may require longer treatment, as its main experimental effects in animal studies have been to reduce interstitial fibrosis rather than alter glomerular haemodynamics.
The lipid hydrolase enzyme acid sphingomyelinase (ASM) is required for the conversion of the lipid cell membrane component sphingomyelin into ceramide. In cancer cells, ASM-mediated ceramide production is important for apoptosis, cell proliferation, and immune modulation, highlighting ASM as a potential multimodal therapeutic target. In this study, we demonstrate elevated ASM activity in the lung tumor environment and blood serum of patients with non-small cell lung cancer (NSCLC). RNAi-mediated attenuation of SMPD1 in human NSCLC cells rendered them resistant to serum starvation-induced apoptosis. In a murine model of lung adenocarcinoma, ASM deficiency reduced tumor development in a manner associated with significant enhancement of Th1-mediated and cytotoxic T-cell-mediated antitumor immunity. Our findings indicate that targeting ASM in NSCLC can act by tumor cell-intrinsic and-extrinsic mechanisms to suppress tumor cell growth, most notably by enabling an effective antitumor immune response by the host. (C) 2017 AACR.
New data from the LEADER trial show that the glucagon-like peptide 1 receptor agonist liraglutide protects against diabetic nephropathy in patients with type 2 diabetes mellitus. The renoprotective efficacy of liraglutide is not, however, as great as that reported for the sodium-glucose cotransporter 2 inhibitor emplagiflozin in the EMPA-REG OUTCOME trial.
Background: Sex-specific differences in factors associated with aging and lifespan, such as sarcopenia and disease development, are increasingly recognized. The study aims to assess sex-specific aspects of the association between vitamin D insufficiency and low lean mass as well as between vitamin D insufficiency and the frailty phenotype.
Methods: A total of 1102 participants (51% women) from the Berlin Aging Study II were included in this cross-sectional study. Vitamin D insufficiency was defined as a 25(OH)D level <50 nmol/L. Lean mass was assessed with dual-energy x-ray absorptiometry and corrected by body mass index. Low lean mass was defined according to the Foundations for the National Institutes of Health Sarcopenia Project criteria (appendicular lean mass/body mass index <0.789 in men and <0.512 in women) and frailty defined according to the Fried criteria.
Results: In a risk factor adjusted analysis, the association of vitamin D insufficiency was significantly influenced by sex (P for interaction < 0.001). Men with vitamin D insufficiency had 1.8 times higher odds of having low lean mass, with no association between vitamin D insufficiency and low lean mass in women. Participants with vitamin D insufficiency had 1.5 higher odds of being prefrail/frail with no significant effect modification by sex.
Conclusions: We found notable sex-specific differences in the association of vitamin D insufficiency with low lean mass but not of vitamin D insufficiency with frailty. Vitamin D might play a relevant role in the loss of lean mass in men but not women and might be a biological marker of an unfavorable aging process associated with early development of frailty regardless of sex.
Objective: Aging is accompanied by loss of brown adipocytes and a decline in their thermogenic potential, which may exacerbate the development of adiposity and other metabolic disorders. Presently, only limited evidence exists describing the molecular alterations leading to impaired brown adipogenesis with aging and the contribution of these processes to changes of systemic energy metabolism.
Methods: Samples of young and aged murine brown and white adipose tissue were used to compare age-related changes of brown adipogenic gene expression and thermogenesis-related lipid mobilization. To identify potential markers of brown adipose tissue aging, non-targeted proteomic and metabolomic as well as targeted lipid analyses were conducted on young and aged tissue samples. Subsequently, the effects of several candidate lipid classes on brown adipocyte function were examined.
Results: Corroborating previous reports of reduced expression of uncoupling protein-1, we observe impaired signaling required for lipid mobilization in aged brown fat after adrenergic stimulation. Omics analyses additionally confirm the age-related impairment of lipid homeostasis and reveal the accumulation of specific lipid classes, including certain sphingolipids, ceramides, and dolichols in aged brown fat. While ceramides as well as enzymes of dolichol metabolism inhibit brown adipogenesis, inhibition of sphingosine 1-phosphate receptor 2 induces brown adipocyte differentiation.
Conclusions: Our functional analyses show that changes in specific lipid species, as observed during aging, may contribute to reduced thermogenic potential. They thus uncover potential biomarkers of aging as well as molecular mechanisms that could contribute to the degradation of brown adipocytes, thereby providing potential treatment strategies of age-related metabolic conditions.
Background: Population-specificity of exploratory dietary patterns limits their generalizability in investigations with type 2 diabetes incidence.
Objective: The aim of this study was to derive country-specific exploratory dietary patterns, investigate their association with type 2 diabetes incidence, and replicate diabetes-associated dietary patterns in other countries.
Methods: Dietary intake data were used, assessed by country-specific questionnaires at baseline of 11,183 incident diabetes cases and 14,694 subcohort members (mean age 52.9 y) from 8 countries, nested within the European Prospective Investigation into Cancer and Nutrition study (mean follow-up time 6.9 y). Exploratory dietary patterns were derived by principal component analysis. HRs for incident type 2 diabetes were calculated by Prentice-weighted Cox proportional hazard regression models. Diabetes-associated dietary patterns were simplified or replicated to be applicable in other countries. A meta-analysis across all countries evaluated the generalizability of the diabetes-association.
Results: Two dietary patterns per country/UK-center, of which overall 3 dietary patterns were diabetes-associated, were identified. A risk-lowering French dietary pattern was not confirmed across other countries: pooled HRFrance per 1 SD: 1.00; 95% CI: 0.90, 1.10. Risk-increasing dietary patterns, derived in Spain and UK-Norfolk, were confirmed, but only the latter statistically significantly: HRSpain: 1.09; 95% CI: 0.97, 1.22 and HRUK-Norfolk: 1.12; 95% CI: 1.04, 1.20. Respectively, this dietary pattern was characterized by relatively high intakes of potatoes, processed meat, vegetable oils, sugar, cake and cookies, and tea. Conclusions: Only few country/center-specific dietary patterns (3 of 18) were statistically significantly associated with diabetes incidence in this multicountry European study population. One pattern, whose association with diabetes was confirmed across other countries, showed overlaps in the food groups potatoes and processed meat with identified diabetes-associated dietary patterns from other studies. The study demonstrates that replication of associations of exploratory patterns with health outcomes is feasible and a necessary step to overcome population-specificity in associations from such analyses.
Hintergrund: Die Kombination aus Übergewicht/Adipositas und reduzierter Skelettmuskelmasse (Sarkopenie) führt zu einem prognostisch ungünstigen Phänotyp, der als sarkopene Adipositas bezeichnet wird.
Ziel der Arbeit: Ziel dieser Arbeit ist, eine Übersicht über Diagnosekriterien der sarkopenen Adipositas, ihre klinischen Implikationen, die pathophysiologischen Ursachen mit besonderem Fokus auf der subklinischen Inflammation und den verfügbaren therapeutischen Optionen zu geben.
Ergebnisse: In aktuellen Studien werden verschiedene Diagnosekriterien der sarkopenen Adipositas verwendet, was einen Vergleich zwischen den Arbeiten erschwert und in Prävalenzschätzungen von 2–48 % in verschiedenen Studienpopulationen resultiert. Nichtsdestotrotz scheint die sarkopene Adipositas einen Risikofaktor für erhöhte Morbidität und Mortalität darzustellen, wobei kardiometabolische Erkrankungen und funktionelle Einschränkungen am besten erforscht sind. Neben Lebensstil- und genetischen Faktoren werden altersassoziierte endokrine und neuromuskuläre Parameter diskutiert. Sowohl hohes Lebensalter als auch Adipositas führen zu einer subklinischen Inflammation, die über einen fatalen Feedbackmechanismus zum Muskelabbau und zur Zunahme der Fettmasse beiträgt. Hinsichtlich Therapieoptionen stehen derzeit kombinierte Ernährungs- und Bewegungsinterventionen im Vordergrund.
Schlussfolgerung: Die sarkopene Adipositas stellt einen klinisch relevanten Phänotyp dar, dessen Pathogenese aber nur z. T. verstanden ist, was Maßnahmen der Prävention und Therapie begrenzt. Neue Strategien zu Muskelaufbau und Fettreduktion sind daher dringend erforderlich, um gesundheitliche Beeinträchtigungen im höheren Lebensalter zu minimieren.
Side-directed transfer and presystemic metabolism of selenoneine in a human intestinal barrier model
(2019)
Scope: Selenoneine, a recently discovered selenium (Se) species mainly present in marine fish, is the Se analogue of ergothioneine, a sulfur-containing purported antioxidant. Although similar properties have been proposed for selenoneine, data on its relevance to human health are yet scarce. Here, the transfer and presystemic metabolism of selenoneine in an in vitro model of the human intestinal barrier are investigated. Methods and results: Selenoneine and the reference species Se-methylselenocysteine (MeSeCys) and selenite are applied to the Caco-2 intestinal barrier model. Selenoneine is transferred in higher amounts, but with similar kinetics as selenite, while MeSeCys shows the highest permeability. In contrast to the reference species, transfer of selenoneine is directed toward the blood side. Cellular Se contents demonstrate that selenoneine is efficiently taken up by Caco-2 cells. Moreover, HPLC/MS-based Se speciation studies reveal a partial metabolism to Se-methylselenoneine, a metabolite previously detected in human blood and urine. Conclusions: Selenoneine is likely to pass the intestinal barrier via transcellular, carrier-mediated transport, is highly bioavailable to Caco-2 cells and undergoes metabolic transformations. Therefore, further studies are needed to elucidate its possible health effects and to characterize the metabolism of selenoneine in humans.
Dipeptidyl peptidase type 4 (DPP-4) inhibitors were reported to have beneficial effects in experimental models of chronic kidney disease. The underlying mechanisms are not completely understood. However, these effects could be mediated via the glucagon-like peptide-1 (GLP-1)/GLP-1 receptor (GLP1R) pathway. Here we investigated the renal effects of the DPP-4 inhibitor linagliptin in Glp1r-/- knock out and wild-type mice with 5/6 nephrectomy (5/6Nx). Mice were allocated to groups: sham + wild type + placebo; 5/6Nx+ wild type + placebo; 5/6Nx+ wild type + linagliptin; sham + knock out+ placebo; 5/6Nx + knock out+ placebo; 5/6Nx + knock out+ linagliptin. 5/6Nx caused the development of renal interstitial fibrosis, significantly increased plasma cystatin C and creatinine levels and suppressed renal gelatinase/collagenase, matrix metalloproteinase-1 and -13 activities; effects counteracted by linagliptin treatment in wildtype and Glp1r-/- mice. Two hundred ninety-eight proteomics signals were differentially regulated in kidneys among the groups, with 150 signals specific to linagliptin treatment as shown by mass spectrometry. Treatment significantly upregulated three peptides derived from collagen alpha-1(I), thymosin beta 4 and heterogeneous nuclear ribonucleoprotein Al (HNRNPA1) and significantly downregulated one peptide derived from Y box binding protein-1 (YB-1). The proteomics results were further confirmed using western blot and immunofluorescence microscopy. Also, 5/6Nx led to significant up-regulation of renal transforming growth factor-beta 1 and pSMAD3 expression in wild type mice and linagliptin significantly counteracted this up-regulation in wild type and GIplr-/- mice. Thus, the renoprotective effects of linagliptin cannot solely be attributed to the GLP-1/GLP1R pathway, highlighting the importance of other signaling pathways (collagen I homeostasis, HNRNPA1,YB-1,thymosin beta 4 and TGF-beta 1) influenced by DPP-4 inhibition.
Weltweit sind fast 40 % der Bevölkerung übergewichtig und die Prävalenz von Adipositas, Insulinresistenz und den resultierenden Folgeerkrankungen wie dem Metabolischen Syndrom und Typ-2-Diabetes steigt rapide an. Als häufigste Ursachen werden diätetisches Fehlverhalten und mangelnde Bewegung angesehen. Die nicht-alkoholische Fettlebererkrankung (NAFLD), deren Hauptcharakteristikum die exzessive Akkumulation von Lipiden in der Leber ist, korreliert mit dem Body Mass Index (BMI). NAFLD wird als hepatische Manifestation des Metabolischen Syndroms angesehen und ist inzwischen die häufigste Ursache für Leberfunktionsstörungen. Die Erkrankung umfasst sowohl die benigne hepatische Steatose (Fettleber) als auch die progressive Form der nicht-alkoholischen Steatohepatitis (NASH), bei der die Steatose von Entzündung und Fibrose begleitet ist. Die Ausbildung einer NASH erhöht das Risiko, ein hepatozelluläres Karzinom (HCC) zu entwickeln und kann zu irreversibler Leberzirrhose und terminalem Organversagen führen. Nahrungsbestandteile wie Cholesterol und Fett-reiche Diäten werden als mögliche Faktoren diskutiert, die den Übergang einer einfachen Fettleber zur schweren Verlaufsform der Steatohepatitis / NASH begünstigen. Eine Ausdehnung des Fettgewebes wird von Insulinresistenz und einer niedrig-gradigen chronischen Entzündung des Fettgewebes begleitet. Neben Endotoxinen aus dem Darm gelangen Entzündungsmediatoren aus dem Fettgewebe zur Leber. Als Folge werden residente Makrophagen der Leber, die Kupfferzellen, aktiviert, die eine Entzündungsantwort initiieren und weitere pro-inflammatorische Mediatoren freisetzen, zu denen Chemokine, Cytokine und Prostanoide wie Prostaglandin E2 (PGE2) gehören. In dieser Arbeit soll aufgeklärt werden, welchen Beitrag PGE2 an der Ausbildung von Insulinresistenz, hepatischer Steatose und Entzündung im Rahmen von Diät-induzierter NASH im komplexen Zusammenspiel mit der Regulation der Cytokin-Produktion und anderen Co-Faktoren wie Hyperinsulinämie und Hyperlipidämie hat. In murinen und humanen Makrophagen-Populationen wurde untersucht, welche Faktoren die Bildung von PGE2 fördern und wie PGE2 die Entzündungsantwort aktivierter Makrophagen reguliert. In primären Hepatozyten der Ratte sowie in isolierten humanen Hepatozyten und Zelllinien wurde der Einfluss von PGE2 allein und in Kombination mit Cytokinen, deren Bildung durch PGE2 beeinflusst werden kann, auf die Insulin-abhängige Regulation des Glucose- und Lipid-stoffwechsels untersucht. Um den Einfluss von PGE2 im komplexen Zusammenspiel der Zelltypen in der Leber und im Gesamtorganismus zu erfassen, wurden Mäuse, in denen die PGE2-Synthese durch die Deletion der mikrosomalen PGE-Synthase 1 (mPGES1) vermindert war, mit einer NASH-induzierenden Diät gefüttert. In Lebern von Patienten mit NASH oder in Mäusen mit Diät-induzierter NASH war die Expression der PGE2-synthetisierenden Enzyme Cyclooxygenase 2 (COX2) und mPGES1 sowie die Bildung von PGE2 im Vergleich zu gesunden Kontrollen gesteigert und korrelierte mit dem Schweregrad der Lebererkrankung. In primären Makrophagen aus den Spezies Mensch, Maus und Ratte sowie in humanen Makrophagen-Zelllinien war die Bildung pro-inflammatorischer Mediatoren wie Chemokinen, Cytokinen und Prostaglandinen wie PGE2 verstärkt, wenn die Zellen mit Endotoxinen wie Lipopolysaccharid (LPS), Fettsäuren wie Palmitinsäure, Cholesterol und Cholesterol-Kristallen oder Insulin, das als Folge der kompensatorischen Hyperinsulinämie bei Insulinresistenz verstärkt freigesetzt wird, inkubiert wurden. Insulin steigerte dabei synergistisch mit LPS oder Palmitinsäure die Synthese von PGE2 sowie der anderen Entzündungsmediatoren wie Interleukin (IL) 8 und IL-1β. PGE2 reguliert die Entzündungsantwort: Neben der Induktion der eigenen Synthese-Enzyme verstärkte PGE2 die Expression der Immunzell-rekrutierenden Chemokine IL-8 und (C-C-Motiv)-Ligand 2 (CCL2) sowie die der pro-inflammatorischen Cytokine IL-1β und IL-6 in Makrophagen und kann so zur Verstärkung der Entzündungsreaktion beitragen. Außerdem förderte PGE2 die Bildung von Oncostatin M (OSM) und OSM induzierte in einer positiven Rückkopplungsschleife die Expression der PGE2-synthetisierenden Enzyme. Andererseits hemmte PGE2 die basale und LPS-vermittelte Bildung des potenten pro-inflammatorischen Cytokins Tumornekrosefaktor α (TNFα) und kann so die Entzündungsreaktion abschwächen. In primären Hepatozyten der Ratte und humanen Hepatozyten beeinträchtigte PGE2 direkt die Insulin-abhängige Aktivierung der Insulinrezeptor-Signalkette zur Steigerung der Glucose-Verwertung, in dem es durch Signalketten, die den verschiedenen PGE2-Rezeptoren nachgeschaltet sind, Kinasen wie ERK1/2 und IKKβ aktivierte und eine inhibierende Serin-Phosphorylierung der Insulinrezeptorsubstrate bewirkte. PGE2 verstärkte außerdem die IL-6- oder OSM-vermittelte Insulinresistenz und Steatose in primären Hepatozyten der Ratte. Die Wirkung von PGE2 im Gesamtorganismus sollte in Mäusen mit Diät-induzierter NASH untersucht werden. Die Fütterung einer Hochfett-Diät mit Schmalz als Fettquelle, das vor allem gesättigte Fettsäuren enthält, verursachte Fettleibigkeit, Insulinresistenz und eine hepatische Steatose in Wildtyp-Mäusen. In Tieren, die eine Hochfett-Diät mit Sojaöl als Fettquelle, das vor allem (ω-6)-mehrfach-ungesättigte Fettsäuren (PUFAs) enthält, oder eine Niedrigfett-Diät mit Cholesterol erhielten, war lediglich eine hepatische Steatose nachweisbar, jedoch keine verstärkte Gewichtszunahme im Vergleich zu Geschwistertieren, die eine Standard-Diät bekamen. Im Gegensatz dazu verursachte die Fütterung einer Hochfett-Diät mit PUFA-reichem Sojaöl als Fettquelle in Kombination mit Cholesterol sowohl Fettleibigkeit und Insulinresistenz als auch hepatische Steatose mit Hepatozyten-Hypertrophie, lobulärer Entzündung und beginnender Fibrose in Wildtyp-Mäusen. Diese Tiere spiegelten alle klinischen und histologischen Parameter der humanen NASH im Metabolischen Syndrom wider. Nur die Kombination von hohen Mengen ungesättigter Fettsäuren aus Sojaöl und Cholesterol in der Nahrung führte zu einer exzessiven Akkumulation des Cholesterols und der Bildung von Cholesterol-Kristallen in den Hepatozyten, die zur Schädigung der Mitochondrien, schwerem oxidativem Stress und schließlich zum Absterben der Zellen führten. Als Konsequenz phagozytieren Kupfferzellen die Zelltrümmer der Cholesterol-überladenen Hepatozyten, werden dadurch aktiviert, setzen Chemokine, Cytokine und PGE2 frei, die die Entzündungsreaktion verstärken und die Infiltration von weiteren Immunzellen initiieren können und verursachen so eine Progression zur Steatohepatitis (NASH). Die Deletion der mikrosomalen PGE-Synthase 1 (mPGES1), dem induzierbaren Enzym der PGE2-Synthese aus Cyclooxygenase-abhängigen Vorstufen, reduzierte die Diät-abhängige Bildung von PGE2 in der Leber. Die Fütterung der NASH-induzierenden Diät verursachte in Wildtyp- und mPGES1-defizienten Mäusen eine ähnliche Fettleibigkeit und Zunahme der Fettmasse sowie die Ausbildung von hepatischer Steatose mit Entzündung und Fibrose (NASH) im histologischen Bild. In mPGES1-defizienten Mäusen waren jedoch Parameter für die Infiltration von Entzündungszellen und die Diät-abhängige Schädigung der Leber im Vergleich zu Wildtyp-Tieren erhöht, was sich auch in einer stärkeren Diät-induzierten systemischen Insulinresistenz widerspiegelte. Die Bildung des pro-inflammatorischen und pro-apoptotischen Cytokins TNFα war in mPGES1-defizienten Mäusen durch die Aufhebung der negativen Rückkopplungshemmung verstärkt, was einen gesteigerten Diät-induzierten Zelluntergang gestresster Lipid-überladener Hepatozyten und eine nach-geschaltete Entzündungsantwort zur Folge hatte. Zusammenfassend wurde unter den gewählten Versuchsbedingungen in vivo eine anti-inflammatorische Rolle von PGE2 verifiziert, da das Prostanoid vor allem indirekt durch die Hemmung der TNFα-vermittelten Entzündungsreaktion die Schädigung der Leber, die Verstärkung der Entzündung und die Ausbildung von Insulinresistenz im Rahmen der Diät-abhängigen Fettlebererkrankung abschwächte.
We previously showed that purified 1-methoxy-3-indolylmethyl (1-MIM) glucosinolate, a secondary plant metabolite in Brassica species, is mutagenic in various in vitro systems and forms DNA and protein adducts in mouse models. In the present study, we administered 1-MIM glucosinolate in a natural matrix to mice, by feeding a diet containing pak choi powder and extract. Groups of animals were killed after 1, 2, 4 and 8 days of pak choi diet, directly or, in the case of the 8-day treatment, after 0, 8 and 16 days of recovery with pak choi-free diet. DNA adducts [N-2-(1-MIM)-dG, N-6-(1-MIM)-dA] in six tissues, as well as protein adducts [tau N-(1-MIM)-His] in serum albumin (SA) and hemoglobin (Hb) were determined using UPLC-MS/MS with isotopically labeled internal standards. None of the samples from the 12 control animals under standard diet contained any 1-MIM adducts. All groups receiving pak choi diet showed DNA adducts in all six tissues (exception: lung of mice treated for a single day) as well as SA and Hb adducts. During the feeding period, all adduct levels continuously increased until day 8 (in the jejunum until day 4). During the 14-day recovery period, N-2-(1-MIM)-dG in liver, kidney, lung, jejunum, cecum and colon decreased to 52, 41, 59, 11, 7 and 2%, respectively, of the peak level. The time course of N-6-(1-MIM)-dA was similar. Immunohistochemical analyses indicated that cell turnover is a major mechanism of DNA adduct elimination in the intestine. In the same recovery period, protein adducts decreased more rapidly in SA than in Hb, to 0.7 and 37%, respectively, of the peak level, consistent with the differential turnover of these proteins. In conclusion, the pak choi diet lead to the formation of high levels of adducts in mice. Cell and protein turnover was a major mechanism of adduct elimination, at least in gut and blood.
Role of GDF15 in active lifestyle induced metabolic adaptations and acute exercise response in mice
(2019)
Physical activity is an important contributor to muscle adaptation and metabolic health. Growth differentiation factor 15 (GDF15) is established as cellular and nutritional stress-induced cytokine but its physiological role in response to active lifestyle or acute exercise is unknown. Here, we investigated the metabolic phenotype and circulating GDF15 levels in lean and obese male C57BI/6J mice with long-term voluntary wheel running (VWR) intervention. Additionally, treadmill running capacity and exercise-induced muscle gene expression was examined in GDF15-ablated mice. Active lifestyle mimic via VWR improved treadmill running performance and, in obese mice, also metabolic phenotype. The post-exercise induction of skeletal muscle transcriptional stress markers was reduced by VWR. Skeletal muscle GDF15 gene expression was very low and only transiently increased post-exercise in sedentary but not in active mice. Plasma GDF15 levels were only marginally affected by chronic or acute exercise. In obese mice, VWR reduced GDF15 gene expression in different tissues but did not reverse elevated plasma GDF15. Genetic ablation of GDF15 had no effect on exercise performance but augmented the post exercise expression of transcriptional exercise stress markers (Atf3, Atf6, and Xbp1s) in skeletal muscle. We conclude that skeletal muscle does not contribute to circulating GDF15 in mice, but muscle GDF15 might play a protective role in the exercise stress response.
Aim: Assessment of the feasibility and reliability of immune-inflammatory biomarker measurements. Methods: The following biomarkers were assessed in 207 predominantly healthy participants at baseline and after 4 months: MMF, TGF-beta, suPAR and clusterin. Results: Intraclass correlation coefficients (95% CIs) ranged from good for TGF-beta (0.75 [95% CI: 0.33-0.90]) to excellent for MMF (0.81 [95% CI: 0.64-0.90]), clusterin (0.83 [95% CI: 0.78-0.87]) and suPAR (0.91 [95% CI: 0.88-0.93]). Measurement of TGF-beta was challenged by the large number of values below the detection limit. Conclusion: Single measurements of suPAR, clusterin and MMF could serve as feasible and reliable biomarkers of immune-inflammatory pathways in biomedical research.
Transmission of measles virus (MV) from dendritic to airway epithelial cells is considered as crucial to viral spread late in infection. Therefore, pathways and effectors governing this process are promising targets for intervention. To identify these, we established a 3D respiratory tract model where MV transmission by infected dendritic cells (DCs) relied on the presence of nectin-4 on H358 lung epithelial cells. Access to recipient cells is an important prerequisite for transmission, and we therefore analyzed migration of MV-exposed DC cultures within the model. Surprisingly, enhanced motility toward the epithelial layer was observed for MV-infected DCs as compared to their uninfected siblings. This occurred independently of factors released from H358 cells indicating that MV infection triggered cytoskeletal remodeling associated with DC polarization enforced velocity. Accordingly, the latter was also observed for MV-infected DCs in collagen matrices and was particularly sensitive to ROCK inhibition indicating infected DCs preferentially employed the amoeboid migration mode. This was also implicated by loss of podosomes and reduced filopodial activity both of which were retained in MV-exposed uninfected DCs. Evidently, sphingosine kinase (SphK) and sphingosine-1-phosphate (S1P) as produced in response to virus-infection in DCs contributed to enhanced velocity because this was abrogated upon inhibition of sphingosine kinase activity. These findings indicate that MV infection promotes a push-and-squeeze fast amoeboid migration mode via the SphK/S1P system characterized by loss of filopodia and podosome dissolution. Consequently, this enables rapid trafficking of virus toward epithelial cells during viral exit.
Over the last few decades, there has been a tremendous increase in research on antibacterial surface coatings as an alternative strategy against bacterial infections. Although there are several examples of effective strategies to prevent bacterial adhesion, the effect of the wetting properties on the coating was rarely considered as a crucial factor. Here we report an in-depth study on the effect of extreme wettability on the antibacterial efficiency of a silver nanoparticles ( AgNPs)-based coating. By controlling surface polymerization of mussel-inspired dendritic polyglycerol ( MI-dPG) and post-functionalization, surfaces with wetting properties ranging from superhydrophilic to superhydrophobic were fabricated. Subsequently, AgNPs were embedded into the coatings by applying in situ reduction using the free catechols-moieties present in the MI-dPG coating. The resulting polymer coatings exhibited excellent antibacterial ability against planktonic Escherichia coli ( E. coli) DH5a and Staphylococcus aureus ( S. aureus) SH1000. The antibacterial efficiency of the coatings was analyzed by using inductively coupled plasma mass spectrometry ( ICP-MS) and bacterial viability tests. Furthermore, the antifouling properties of the coatings in relation to the antibacterial properties were evaluated.
Tea aroma is one of the most important factors affecting the character and quality of tea. Here we describe the practical application of methyl jasmonate (MeJA) to improve the aroma quality of teas. The changes of selected metabolites during crucial tea processing steps, namely, withering, fixing and rolling, and fermentation, were analyzed. MeJA treatment of tea leaves (12, 24, 48, and 168 h) greatly promotes the aroma quality of green, oolong, and black tea products when comparing with untreated ones (0 h) and as confirmed by sensory evaluation. MeJA modulates the aroma profiles before, during, and after processing. Benzyl alcohol, benzaldehyde, 2-phenylethyl alcohol, phenylacetaldehyde, and trans-2-hexenal increased 1.07- to 3-fold in MeJA-treated fresh leaves and the first two maintained at a higher level in black tea and the last two in green tea. This correlates with a decrease in aromatic amino acids by more than twofold indicating a direct relation to tryptophan- and phenylalanine-derived volatiles. MeJA-treated oolong tea was characterized by a more pleasant aroma. Especially the terpenoids linalool and oxides, geraniol, and carvenol increased by more than twofold.
Zinc protoporphyrin IX (ZnPP) is known to accumulate in most meat products during storage. However, the pathway of its formation is not yet completely clarified. To gain more insights into the specificity of ZnPP occurrence, a SEC-HPLC-UV-fluorescence setup was established to screen the proteins in aqueous meat extracts for their ZnPP fluorescence during incubation. In accordance with previous studies it was identified by SDS-PAGE and MALDI-TOF-MS that ZnPP formation takes place in myoglobin. In this study, valuable new insights into the ZnPP forming pathway were gained, as our results indicated that a significant part of ZnPP - after being formed within the protein - is transitioned into free ZnPP during incubation. Additionally, the obtained results implied that ZnPP may also occur in proteins of higher molecular weight (> 100 kDa).
Sekundäre Pflanzenstoffe und ihre gesundheitsfördernden Eigenschaften sind in den letzten zwei Jahrzehnten vielfach ernährungsphysiologisch untersucht und spezifische positive Effekte im humanen Organismus zum Teil sehr genau beschrieben worden. Zu den Carotinoiden zählend ist der sekundäre Pflanzenstoff Lutein insbesondere in der Prävention von ophthalmologischen Erkrankungen in den Mittelpunkt der Forschung gerückt. Das ausschließlich von Pflanzen und einigen Algen synthetisierte Xanthophyll wird über die pflanzliche Nahrung insbesondere grünes Blattgemüse in den humanen Organismus aufgenommen. Dort akkumuliert es bevorzugt im Makulapigment der Retina des menschlichen Auges und ist bedeutend im Prozess der Aufrechterhaltung der Funktionsfähigkeit der Photorezeptorzellen. Im Laufe des Alterns kann die Abnahme der Dichte des Makulapigments und der Abbau von Lutein beobachtet werden. Die dadurch eintretende Destabilisierung der Photorezeptorzellen im Zusammenhang mit einer veränderten Stoffwechsellage im alternden Organismus kann zur Ausprägung der altersbedingten Makuladegeneration (AMD) führen. Die pathologische Symptomatik der Augenerkrankung reicht vom Verlust der Sehschärfe bis hin zum irreversiblen Erblinden. Da therapeutische Mittel ausschließlich ein Fortschreiten verhindern, bestehen hier Forschungsansätze präventive Maßnahmen zu finden. Die Supplementierung von luteinhaltigen Präparaten bietet dabei einen Ansatzpunkt. Auf dem Markt finden sich bereits Nahrungsergänzungsmittel (NEM) mit Lutein in verschiedenen Applikationen. Limitierend ist dabei die Stabilität und Bioverfügbarkeit von Lutein, welches teilweise kostenintensiv und mit unbekannter Reinheit zu erwerben ist. Aus diesem Grund wäre die Verwendung von Luteinestern als die pflanzliche Speicherform des Luteins im Rahmen eines NEMs vorteilhaft. Neben ihrer natürlichen, höheren Stabilität sind Luteinester nachhaltig und kostengünstig einsetzbar.
In dieser Arbeit wurden physikochemische und ernährungsphysiologisch relevante Aspekte in dem Produktentwicklungsprozess eines NEMs mit Luteinestern in einer kolloidalen Formulierung untersucht. Die bisher einzigartige Anwendung von Luteinestern in einem Mundspray sollte die Aufnahme des Wirkstoffes insbesondere für ältere Menschen erleichtern und verbessern. Unter Beachtung der Ergebnisse und der ernährungsphysiologischen Bewertung sollten u.a. Empfehlungen für die Rezepturzusammensetzungen einer Miniemulsion (Emulsion mit Partikelgrößen <1,0 µm) gegeben werden. Eine Einschätzung der Bioverfügbarkeit der Luteinester aus den entwickelten, kolloidalen Formulierungen konnte anhand von Studien zur Resorption- und Absorptionsverfügbarkeit in vitro ermöglicht werden.
In physikalischen Untersuchungen wurden zunächst Basisbestandteile für die Formulierungen präzisiert. In ersten wirkstofffreien Musteremulsionen konnten ausgewählte Öle als Trägerphase sowie Emulgatoren und Löslichkeitsvermittler (Peptisatoren) hinsichtlich ihrer Eignung zur Bereitstellung einer Miniemulsion physikalisch geprüft werden. Die beste Stabilität und optimale Eigenschaften einer Miniemulsion zeigten sich bei der Verwendung von MCT-Öl (engl. medium chain triglyceride) bzw. Rapsöl in der Trägerphase sowie des Emulgators Tween® 80 (Tween 80) allein oder in Kombination mit dem Molkenproteinhydrolysat Biozate® 1 (Biozate 1).
Aus den physikalischen Untersuchungen der Musteremulsionen gingen die Präemulsionen als Prototypen hervor. Diese enthielten den Wirkstoff Lutein in verschiedenen Formen. So wurden Präemulsionen mit Lutein, mit Luteinestern sowie mit Lutein und Luteinestern konzipiert, welche den Emulgator Tween 80 oder die Kombination mit Biozate 1 enthielten. Bei der Herstellung der Präemulsionen führte die Anwendung der Emulgiertechniken Ultraschall mit anschließender Hochdruckhomogenisation zu den gewünschten Miniemulsionen. Beide eingesetzten Emulgatoren boten optimale Stabilisierungseffekte. Anschließend erfolgte die physikochemische Charakterisierung der Wirkstoffe. Insbesondere Luteinester aus Oleoresin erwiesen sich hier als stabil gegenüber verschiedenen Lagerungsbedingungen. Ebenso konnte bei einer kurzzeitigen Behandlung der Wirkstoffe unter spezifischen mechanischen, thermischen, sauren und basischen Bedingungen eine Stabilität von Lutein und Luteinestern gezeigt werden. Die Zugabe von Biozate 1 bot dabei nur für Lutein einen zusätzlichen Schutz. Bei längerer physikochemischer Behandlung unterlagen die in den Miniemulsionen eingebrachten Wirkstoffe moderaten Abbauvorgängen. Markant war deren Sensitivität gegenüber dem basischen Milieu. Im Rahmen der Rezepturentwicklung des NEMs war hier die Empfehlung, eine Miniemulsion mit einem leicht saurem pH-Milieu zum Schutz des Wirkstoffes durch kontrollierte Zugabe weiterer Inhaltstoffe zu gestalten.
Im weiteren Entwicklungsprozess des NEMs wurden Fertigrezepturen mit dem Wirkstoff Luteinester aufgestellt. Die alleinige Anwendung des Emulgators Biozate 1 zeigte sich dabei als ungeeignet. Die weiterhin zur Verfügung stehenden Fertigrezepturen enthielten in der Öl-phase neben dem Wirkstoff das MCT-ÖL oder Rapsöl sowie a-Tocopherol zur Stabilisierung. Die Wasserphase bestand aus dem Emulgator Tween 80 oder einer Kombination aus Tween 80 und Biozate 1. Zusatzstoffe waren zudem als mikrobiologischer Schutz Ascorbinsäure und Kaliumsorbat sowie für sensorische Effekte Xylitol und Orangenaroma. Die Anordnung der Basisrezeptur und das angewendete Emulgierverfahren lieferten stabile Miniemulsionen. Weiterhin zeigten langfristige Lagerungsversuche mit den Fertigrezepturen bei 4°C, dass eine Aufrechterhaltung der geforderten Luteinestermenge im Produkt gewährleistet war. Analoge Untersuchungen an einem luteinhaltigen, marktgängigen Präparat bestätigten dagegen eine bereits bei kurzfristiger Lagerung auftretende Instabilität von Lutein.
Abschließend wurde durch Resorptions- und Absorptionsstudien in vitro mit den Präemulsionen und Fertigrezepturen die Bioverfügbarkeit von Luteinestern geprüft. Nach Behandlung in einem etablierten in vitro Verdaumodell konnte eine geringfügige Resorptionsverfügbarkeit der Luteinester definiert werden. Limitiert war eine Micellarisierung des Wirkstoffes aus den konzipierten Formulierungen zu beobachten. Eine enzymatische Spaltung der Luteinester zu freiem Lutein wurde nur begrenzt festgestellt. Spezifität und Aktivität von entsprechenden hydrolytischen Lipasen sind als äußerst gering gegenüber Luteinestern zu bewerten. In sich anschließenden Zellkulturversuchen mit der Zelllinie Caco-2 wurden keine zytotoxischen Effekte durch die relevanten Inhaltsstoffe in den Präemulsionen gezeigt. Dagegen konnten eine Sensibilität gegenüber den Fertigrezepturen beobachtet werden. Diese sollte im Zusammenhang mit Irritationen der Schleimhäute des Magen-Darm-Traktes bedacht werden. Eine weniger komplexe Rezeptur könnte die beobachteten Einschränkungen möglicherweise minimieren. Abschließende Absorptionsstudien zeigten, dass grundsätzlich eine geringfügige Aufnahme von vorrangig Lutein, aber auch Luteinmonoestern in den Enterocyten aus Miniemulsionen erfolgen kann. Dabei hatte weder Tween 80 noch Biozate 1 einen förderlichen Einfluss auf die Absorptionsrate von Lutein oder Luteinestern. Die Metabolisierung der Wirkstoffe durch vorherigen in vitro-Verdau steigerte die zelluläre Aufnahme von Wirkstoffen aus Formulierungen mit Lutein und Luteinestern gleichermaßen. Die beobachtete Aufnahme von Lutein und Luteinmonoestern in den Enterocyten scheint über passive Diffusion zu erfolgen, wobei auch der aktive Transport nicht ausgeschlossen werden kann. Dagegen können Luteindiester aufgrund ihrer Molekülgröße nicht über den Weg der Micellarisierung und einfachen Diffusion in die Enterocyten gelangen. Ihre Aufnahme in die Dünndarmepithelzellen bedarf einer vorherigen hydrolytischen Spaltung durch spezifische Lipasen. Dieser Schritt limitiert wiederum die effektive Aufnahme der Luteinester in die Zellen bzw. stellt eine Einschränkung in ihrer Bioverfügbarkeit im Vergleich zu freiem Lutein dar.
Zusammenfassend konnte für die physikochemisch stabilen Luteinester eine geringe Bioverfügbarkeit aus kolloidalen Formulierungen gezeigt werden. Dennoch ist die Verwendung als Wirkstoffquelle für den sekundären Pflanzenstoff Lutein in einem NEM zu empfehlen. Im Zusammenhang mit der Aufnahme von luteinreichen, pflanzlichen Lebensmitteln kann trotz der zu erwartenden geringen Bioverfügbarkeit der Luteinester aus dem NEM ein Beitrag zur Verbesserung des Luteinstatus erreicht werden. Entsprechende Publikationen zeigten eindeutige Korrelationen zwischen der Aufnahme von luteinesterhaltigen Präparaten und einem Anstieg der Luteinkonzentration im Serum bzw. der Makulapigmentdichte in vivo. Die geringfügig bessere Bioverfügbarkeit von freiem Lutein steht im kritischen Zusammenhang mit seiner Instabilität und Kostenintensität. Bilanzierend wurde im Rahmen dieser Arbeit das marktgängige Produkt Vita Culus® konzipiert. Im Ausblick sollten humane Interventionsstudien mit dem NEM die abschließende Bewertung der Bioverfügbarkeit von Luteinestern aus dem Präparat möglich machen.
In nature, plants interact with numerous beneficial or pathogenic soil-borne microorganisms. Plants have developed various defense strategies to expel pathogenic microbes, some of which function soon after pathogen infection. We used Medicago truncatula and its oomycete pathogen Aphanomyces euteiches to elucidate early responses of the infected root. A. euteiches causes root rot disease in legumes and is a limiting factor in legume production. Transcript profiling of seedlings and adult plant roots inoculated with A. euteiches zoospores for 2 h revealed specific upregulation of a gene encoding a putative sesquiterpene synthase (M. truncatula TERPENE SYNTHASE 10 [MtTPS10]) in both developmental stages. MtTPS10 was specifically expressed in roots upon oomycete infection. Heterologous expression of MtTPS10 in yeast led to production of a blend of sesquiterpenes and sesquiterpene alcohols, with NMR identifying a major peak corresponding to himalachol. Moreover, plants carrying a tobacco (Nicotiana tabacum) retrotransposon Tnt1 insertion in MtTPS10 lacked the emission of sesquiterpenes upon A. euteiches infection, supporting the assumption that the identified gene encodes a multiproduct sesquiterpene synthase. Mttps10 plants and plants with reduced MtTPS10 transcript levels created by expression of an MtTPS10-artificial microRNA in roots were more susceptible to A. euteiches infection than were the corresponding wild-type plants and roots transformed with the empty vector, respectively. Sesquiterpenes produced by expression of MtTPS10 in yeast also inhibited mycelial growth and A. euteiches zoospore germination. These data suggest that sesquiterpene production in roots by MtTPS10 plays a previously unrecognized role in the defense response of M. truncatula against A. euteiches.
Objective: Fibroblast growth factor (FGF)21 is promptly induced by short fasting in animal models to regulate glucose and fat metabolism. Data on FGF21 in humans are inconsistent and FGF21 has not yet been investigated in old patients with cachexia, a complex syndrome characterized by inflammation and weight loss. The aim of this study was to explore the association of FGF21 with cachexia in old patients compared with their healthy counterparts. Methods: Serum FGF21 and its inactivating enzyme fibroblast activation protein (FAP)-cc were measured with enzyme-linked immunoassays. Cachexia was defined as >= 5% weight loss in the previous 3 mo and concurrent anorexia (Council on Nutrition appetite questionnaire). Results: We included 103 patients with and without cachexia (76.9 +/- 5.2 y of age) and 56 healthy controls (72.9 +/- 5.9 y of age). Cachexia was present in 16.5% of patients. These patients had significantly higher total FGF21 levels than controls (952.1 +/- 821.3 versus 525.2 +/- 560.3 pg/mL; P= 0.012) and the lowest FGF21 levels (293.3 +/- 150.9 pg/mL) were found in the control group (global P < 0.001). Although FAP-alpha did not differ between the three groups (global P = 0.082), bioactive FGF21 was significantly higher in patients with cachexia (global P = 0.002). Risk factor-adjusted regression analyses revealed a significant association between cachexia and total ((beta = 649.745 pg/mL; P < 0.001) and bioactive FGF21 (beta = 393.200 pg/mL; P <0.001), independent of sex, age, and body mass index. Conclusions: Patients with cachexia exhibited the highest FGF21 levels. Clarification is needed to determine whether this is an adaptive response to nutrient deprivation in disease-related cachexia or whether the increased FGF21 values contribute to the catabolic state. (C) 2018 Elsevier Inc. All rights reserved.
PURPOSE. Graves' orbitopathy (GO) is an autoimmune orbital disorder associated with Graves' disease caused by thyrotropin receptor autoantibodies. Orbital fibroblasts (OFs) and CD40 play a key role in disease pathogenesis. The bioactive lipid sphingosine-1-phosphate (S1P) has been implicated in promoting adipogenesis, fibrosis, and inflammation in OFs. We investigated the role of CD40 signaling in inducing S1P activity in orbital inflammation.
METHODS. OFs and T cells were derived from GO patients and healthy control (Ctl) persons. S1P abundance in orbital tissues was evaluated by immunofluorescence. OFs were stimulated with CD40 ligand and S1P levels were determined by ELISA. Further, activities of acid sphingomyelinase (ASM), acid ceramidase, and sphingosine kinase were measured by ultraperformance liquid chromatography. Sphingosine and ceramide contents were analyzed by mass spectrometry. Finally, the role for S1P in T-cell attraction was investigated by T-cell migration assays.
RESULTS. GO orbital tissue showed elevated amounts of S1P as compared to control samples. Stimulation of CD40 induced S1P expression in GO-derived OFs, while Ctl-OFs remained unaffected. A significant increase of ASM and sphingosine kinase activities, as well as lipid formation, was observed in GO-derived OFs. Migration assay of T cells in the presence of SphK inhibitor revealed that S1P released by GO-OFs attracted T cells for migration.
CONCLUSIONS. The results demonstrated that CD40 ligand stimulates GO fibroblast to produce S1P, which is a driving force for T-cell migration. The results support the use of S1P receptor signaling modulators in GO management.
Malnutrition is widespread in older people and represents a major geriatric syndrome with multifactorial etiology and severe consequences for health outcomes and quality of life. The aim of the present paper is to describe current approaches and evidence regarding malnutrition treatment and to highlight relevant knowledge gaps that need to be addressed. Recently published guidelines of the European Society for Clinical Nutrition and Metabolism (ESPEN) provide a summary of the available evidence and highlight the wide range of different measures that can be taken—from the identification and elimination of potential causes to enteral and parenteral nutrition—depending on the patient’s abilities and needs. However, more than half of the recommendations therein are based on expert consensus because of a lack of evidence, and only three are concern patient-centred outcomes. Future research should further clarify the etiology of malnutrition and identify the most relevant causes in order to prevent malnutrition. Based on limited and partly conflicting evidence and the limitations of existing studies, it remains unclear which interventions are most effective in which patient groups, and if specific situations, diseases or etiologies of malnutrition require specific approaches. Patient-relevant outcomes such as functionality and quality of life need more attention, and research methodology should be harmonised to allow for the comparability of studies.
Industrial production and use of boron compounds have increased during the last decades, especially for the manufacture of borosilicate glass, fiberglass, metal alloys and flame retardants. This study was conducted in two districts of Balikesir; Bandirma and Bigadic, which geographically belong to the Marmara Region of Turkey. Bandirma is the production and exportation zone for the produced boric acid and some borates and Bigadic has the largest B deposits in Turkey. 102 male workers who were occupationally exposed to boron from Bandirma and 110 workers who were occupationally and environmentally exposed to boron from Bigadic participated to our study. In this study the DNA damage in the sperm, blood and buccal cells of 212 males was evaluated by comet and micronucleus assays. No significant increase in the DNA damage in blood, sperm and buccal cells was observed in the residents exposed to boron both occupationally and environmentally (p = 0.861) for Comet test in the sperm samples, p = 0.116 for Comet test in the lymphocyte samples, p = 0.042 for micronucleus (MN) test, p = 0.955 for binucleated cells (BN), p = 1.486 for condensed chromatin (CC), p = 0.455 for karyorrhectic cells (KHC), p = 0.541 for karyolitic cells (KLY), p = 1.057 for pyknotic cells (PHC), p = 0.331 for nuclear bud (NBUD)). No correlations were seen between blood boron levels and tail intensity values of the sperm samples, lymphocyte samples, frequencies of MN, BN, KHC, KYL, PHC and NBUD. The results of this study came to the same conclusions of the previous studies that boron does not induce DNA damage even under extreme exposure conditions.
Farber disease is a rare lysosomal storage disorder resulting from acid ceramidase deficiency and subsequent ceramide accumulation. No treatments for Farber disease are clinically available, and affected patients have a severely shortened lifespan. We have recently reported a novel acid ceramidase deficiency model that mirrors the human disease closely. Acid sphingomyelinase is the enzyme that generates ceramide upstream of acid ceramidase in the lysosomes. Using our acid ceramidase deficiency model, we tested if acid sphingomyelinase could be a potential novel therapeutic target for the treatment of Farber disease. A number of functional acid sphingomyelinase inhibitors are clinically available and have been used for decades to treat major depression. Using these as a therapeutic for Farber disease, thus, has the potential to improve central nervous symptoms of the disease as well, something all other treatment options for Farber disease can’t achieve so far. As a proof-of-concept study, we first cross-bred acid ceramidase deficient mice with acid sphingomyelinase deficient mice in order to prevent ceramide accumulation. Double-deficient mice had reduced ceramide accumulation, fewer disease manifestations, and prolonged survival. We next targeted acid sphingomyelinase pharmacologically, to test if these findings would translate to a setting with clinical applicability. Surprisingly, the treatment of acid ceramidase deficient mice with the acid sphingomyelinase inhibitor amitriptyline was toxic to acid ceramidase deficient mice and killed them within a few days of treatment. In conclusion, our study provides the first proof-of-concept that acid sphingomyelinase could be a potential new therapeutic target for Farber disease to reduce disease manifestations and prolong survival. However, we also identified previously unknown toxicity of the functional acid sphingomyelinase inhibitor amitriptyline in the context of Farber disease, strongly cautioning against the use of this substance class for Farber disease patients
Zinc is an essential trace element, making it crucial to have a reliable biomarker for evaluating an individual’s zinc status. The total serum zinc concentration, which is presently the most commonly used biomarker, is not ideal for this purpose, but a superior alternative is still missing. The free zinc concentration, which describes the fraction of zinc that is only loosely bound and easily exchangeable, has been proposed for this purpose, as it reflects the highly bioavailable part of serum zinc. This report presents a fluorescence-based method for determining the free zinc concentration in human serum samples, using the fluorescent probe Zinpyr-1. The assay has been applied on 154 commercially obtained human serum samples. Measured free zinc concentrations ranged from 0.09 to 0.42 nM with a mean of 0.22 ± 0.05 nM. It did not correlate with age or the total serum concentrations of zinc, manganese, iron or selenium. A negative correlation between the concentration of free zinc and total copper has been seen for sera from females. In addition, the free zinc concentration in sera from females (0.21 ± 0.05 nM) was significantly lower than in males (0.23 ± 0.06 nM). The assay uses a sample volume of less than 10 µL, is rapid and cost-effective and allows us to address questions regarding factors influencing the free serum zinc concentration, its connection with the body’s zinc status, and its suitability as a future biomarker for an individual’s zinc status.
In order to assess the individual trace element status of humans for either medical or scientific purposes, amongst others, blood serum levels are determined. Furthermore, animal models are used to study interactions of trace elements. Most published methods require larger amounts (500-1000 mu L) of serum to achieve a reliable determination of multiple trace elements. However, oftentimes, these amounts of serum cannot be dedicated to a single analysis and the amount available for TE-determination is much lower. Therefore, a published ICP-MS/MS method for trace element determination in serum was miniaturized, optimized and validated for the measurement of Mn, Fe, Cu Zn, I and Se in as little as 50 mu L of human and murine serum and is presented in this work. For validation, recoveries of multiple LOTs and levels from commercially available human reference serum samples were determined, infra- and inter-day variations were assessed and limits of detection and quantification determined. It is shown, that the method is capable of giving accurate and reproducible results for all six elements within the relevant concentration ranges for samples from humans living in central Europe as well as from laboratory mice. As a highlight, the achieved limits of detection and quantification for Mn were found to be at 0.02 mu g/L serum and 0.05 mu g/L serum, respectively, while using an alkaline diluent for the parallel determination of iodine.
Botulinum neurotoxins (BoNTs) are potent neurotoxins produced by bacteria, which inhibit neurotransmitter release, specifically in their physiological target known as motor neurons (MNs). For the potency assessment of BoNTs produced for treatment in traditional and aesthetic medicine, the mouse lethality assay is still used by the majority of manufacturers, which is ethically questionable in terms of the 3Rs principle. In this study, MNs were differentiated from human induced pluripotent stem cells based on three published protocols. The resulting cell populations were analyzed for their MN yield and their suitability for the potency assessment of BoNTs. MNs produce specific gangliosides and synaptic proteins, which are bound by BoNTs in order to be taken up by receptor-mediated endocytosis, which is followed by cleavage of specific soluble N-ethylmaleimide-sensitive-factor attachment receptor (SNARE) proteins required for neurotransmitter release. The presence of receptors and substrates for all BoNT serotypes was demonstrated in MNs generated in vitro. In particular, the MN differentiation protocol based on Du et al. yielded high numbers of MNs in a short amount of time with high expression of BoNT receptors and targets. The resulting cells are more sensitive to BoNT/A1 than the commonly used neuroblastoma cell line SiMa. MNs are, therefore, an ideal tool for being combined with already established detection methods.
Trace elements, like Cu, Zn, Fe, or Se, are important for the proper functioning of antioxidant enzymes. However, in excessive amounts, they can also act as pro-oxidants. Accordingly, trace elements influence redox-modulated signaling pathways, such as the Nrf2 pathway. Vice versa, Nrf2 target genes belong to the group of transport and metal binding proteins. In order to investigate whether Nrf2 directly regulates the systemic trace element status, we used mice to study the effect of a constitutive, whole-body Nrf2 knockout on the systemic status of Cu, Zn, Fe, and Se. As the loss of selenoproteins under Se-deprived conditions has been described to further enhance Nrf2 activity, we additionally analyzed the combination of Nrf2 knockout with feeding diets that provide either suboptimal, adequate, or supplemented amounts of Se. Experiments revealed that the Nrf2 knockout partially affected the trace element concentrations of Cu, Zn, Fe, or Se in the intestine, liver, and/or plasma. However, aside from Fe, the other three trace elements were only marginally modulated in an Nrf2-dependent manner. Selenium deficiency mainly resulted in increased plasma Zn levels. One putative mediator could be the metal regulatory transcription factor 1, which was up-regulated with an increasing Se supply and downregulated in Se-supplemented Nrf2 knockout mice.
The investigation of luminal factors influencing zinc availability and accessibility in the intestine is of great interest when analyzing parameters regulating intestinal zinc resorption. Of note, intestinal mucins were suggested to play a beneficial role in the luminal availability of zinc. Their exact zinc binding properties, however, remain unknown and the impact of these glycoproteins on human intestinal zinc resorption has not been investigated in detail. Thus, the aim of this study is to elucidate the impact of intestinal mucins on luminal uptake of zinc into enterocytes and its transfer into the blood. In the present study, in vitro zinc binding properties of mucins were analyzed using commercially available porcine mucins and secreted mucins of the goblet cell line HT-29-MTX. The molecular zinc binding capacity and average zinc binding affinity of these glycoproteins demonstrates that mucins contain multiple zinc-binding sites with biologically relevant affinity within one mucin molecule. Zinc uptake into the enterocyte cell line Caco-2 was impaired by zinc-depleted mucins. Yet this does not represent their form in the intestinal lumen in vivo under zinc adequate conditions. In fact, zinc-uptake studies into enterocytes in the presence of mucins with differing degree of zinc saturation revealed zinc buffering by these glycoproteins, indicating that mucin-bound zinc is still available for the cells. Finally, the impact of mucins on zinc resorption using three-dimensional cultures was studied comparing the zinc transfer of a Caco-2/HT-29-MTX co-culture and conventional Caco-2 monoculture. Here, the mucin secreting co-cultures yielded higher fractional zinc resorption and elevated zinc transport rates, suggesting that intestinal mucins facilitate the zinc uptake into enterocytes and act as a zinc delivery system for the intestinal epithelium.
The investigation of luminal factors influencing zinc availability and accessibility in the intestine is of great interest when analyzing parameters regulating intestinal zinc resorption. Of note, intestinal mucins were suggested to play a beneficial role in the luminal availability of zinc. Their exact zinc binding properties, however, remain unknown and the impact of these glycoproteins on human intestinal zinc resorption has not been investigated in detail. Thus, the aim of this study is to elucidate the impact of intestinal mucins on luminal uptake of zinc into enterocytes and its transfer into the blood. In the present study, in vitro zinc binding properties of mucins were analyzed using commercially available porcine mucins and secreted mucins of the goblet cell line HT-29-MTX. The molecular zinc binding capacity and average zinc binding affinity of these glycoproteins demonstrates that mucins contain multiple zinc-binding sites with biologically relevant affinity within one mucin molecule. Zinc uptake into the enterocyte cell line Caco-2 was impaired by zinc-depleted mucins. Yet this does not represent their form in the intestinal lumen in vivo under zinc adequate conditions. In fact, zinc-uptake studies into enterocytes in the presence of mucins with differing degree of zinc saturation revealed zinc buffering by these glycoproteins, indicating that mucin-bound zinc is still available for the cells. Finally, the impact of mucins on zinc resorption using three-dimensional cultures was studied comparing the zinc transfer of a Caco-2/HT-29-MTX co-culture and conventional Caco-2 monoculture. Here, the mucin secreting co-cultures yielded higher fractional zinc resorption and elevated zinc transport rates, suggesting that intestinal mucins facilitate the zinc uptake into enterocytes and act as a zinc delivery system for the intestinal epithelium.
Sorghum is of growing interest and considered as a safe food for wheat related disorders. Besides the gluten, α-amylase/trypsin-inhibitors (ATIs) have been identified as probable candidates for these disorders. Several studies focused on wheat-ATIs although there is still a lack of data referring to the relative abundance of sorghum-ATIs. The objective of this work was therefore to contribute to the characterization of sorghum ATI profiles by targeted proteomics tools. Fifteen sorghum cultivars from different regions were investigated with raw proteins ranging from 7.9 to 17.0 g/100 g. Ammonium bicarbonate buffer in combination with urea was applied for protein extraction, with concentration from 0.588 ± 0.047 to 4.140 ± 0.066 mg/mL. Corresponding electrophoresis data showed different protein profiles. UniProtKB data base research reveals two sorghum ATIs, P81367 and P81368; both reviewed and a targeted LC–MS/MS method was developed to analyze these. Quantifier peptides ELAAVPSR (P81367) and TYMVR (P81368) were identified and retained as biomarkers for relative quantification. Different reducing and alkylating agents were assessed and combination of tris (2 carboxyethyl) phosphine/iodoacetamide gave the best response. Linearity was demonstrated for the quantifier peptides with standard recovery between 92.2 and 107.6%. Nine sorghum cultivars presented up to 60 times lower ATI contents as compared to wheat samples. This data suggests that sorghum can effectively be considered as a good alternative to wheat.
Sorghum is of growing interest and considered as a safe food for wheat related disorders. Besides the gluten, α-amylase/trypsin-inhibitors (ATIs) have been identified as probable candidates for these disorders. Several studies focused on wheat-ATIs although there is still a lack of data referring to the relative abundance of sorghum-ATIs. The objective of this work was therefore to contribute to the characterization of sorghum ATI profiles by targeted proteomics tools. Fifteen sorghum cultivars from different regions were investigated with raw proteins ranging from 7.9 to 17.0 g/100 g. Ammonium bicarbonate buffer in combination with urea was applied for protein extraction, with concentration from 0.588 ± 0.047 to 4.140 ± 0.066 mg/mL. Corresponding electrophoresis data showed different protein profiles. UniProtKB data base research reveals two sorghum ATIs, P81367 and P81368; both reviewed and a targeted LC–MS/MS method was developed to analyze these. Quantifier peptides ELAAVPSR (P81367) and TYMVR (P81368) were identified and retained as biomarkers for relative quantification. Different reducing and alkylating agents were assessed and combination of tris (2 carboxyethyl) phosphine/iodoacetamide gave the best response. Linearity was demonstrated for the quantifier peptides with standard recovery between 92.2 and 107.6%. Nine sorghum cultivars presented up to 60 times lower ATI contents as compared to wheat samples. This data suggests that sorghum can effectively be considered as a good alternative to wheat.
Flavonoids, carotenoids, and chlorophylls were characterized in microgreens and leaves of pea (Pisum sativum) and lupin (Lupinus angustifolius) as these metabolites change during ontogeny. All metabolites were higher in the leaves for both species. Acylated quercetin and kaempferol sophorotrioses were predominant in pea. Genistein and malonylated chrysoeriol were predominant in lupin. Further, the impact of breadmaking on these metabolites using pea and lupin material of two ontogenetic stages as an added ingredient in wheat-based bread was assessed. In "pea microgreen bread" no decrease of quercetin was found with regard to the non-processed plant material. However kaempferol glycosides showed slight decreases induced by the breadmaking process in "pea microgreen bread" and "pea leaf bread." In "lupin microgreen bread" no decrease of genistein compared to the non-processed plant material was found. Chrysoeriol glycosides showed slight decreases induced by the breadmaking process in "lupin microgreen bread" and "lupin leaf bread." In all breads, carotenoids and chlorophylls were depleted however pheophytin formation was caused. Thus, pea and lupin microgreens and leaves are suitable, natural ingredients for enhancing health-promoting secondary plant metabolites in bread and may even be used to tailor bread for specific consumer health needs.
Two decades ago, sphingosine 1-phosphate (S1P) was discovered as a novel bioactive molecule that regulates a variety of cellular functions. The plethora of S1P-mediated effects is due to the fact that the sphingolipid not only modulates intracellular functions but also acts as a ligand of G protein-coupled receptors after secretion into the extracellular environment. In the plasma, S1P is found in high concentrations, modulating immune cell trafficking and vascular endothelial integrity. The liver is engaged in modulating the plasma S1P content, as it produces apolipoprotein M, which is a chaperone for the S1P transport. Moreover, the liver plays a substantial role in glucose and lipid homeostasis. A dysfunction of glucose and lipid metabolism is connected with the development of liver diseases such as hepatic insulin resistance, non-alcoholic fatty liver disease, or liver fibrosis. Recent studies indicate that S1P is involved in liver pathophysiology and contributes to the development of liver diseases. In this review, the current state of knowledge about S1P and its signaling in the liver is summarized with a specific focus on the dysregulation of S1P signaling in obesity-mediated liver diseases. Thus, the modulation of S1P signaling can be considered as a potential therapeutic target for the treatment of hepatic diseases.
As a tumor suppressor and the most frequently mutated gene in cancer, p53 is among the best-described molecules in medical research. As cancer is in most cases an age-related disease, it seems paradoxical that p53 is so strongly conserved from early multicellular organisms to humans. A function not directly related to tumor suppression, such as the regulation of metabolism in nontransformed cells, could explain this selective pressure. While this role of p53 in cellular metabolism is gradually emerging, it is imperative to dissect the tissue-and cell-specific actions of p53 and its downstream signaling pathways. In this review, we focus on studies reporting p53's impact on adipocyte development, function, and maintenance, as well as the causes and consequences of altered p53 levels in white and brown adipose tissue (AT) with respect to systemic energy homeostasis. While whole body p53 knockout mice gain less weight and fat mass under a high-fat diet owing to increased energy expenditure, modifying p53 expression specifically in adipocytes yields more refined insights: (1) p53 is a negative regulator of in vitro adipogenesis; (2) p53 levels in white AT are increased in diet-induced and genetic obesity mouse models and in obese humans; (3) functionally, elevated p53 in white AT increases senescence and chronic inflammation, aggravating systemic insulin resistance; (4) p53 is not required for normal development of brown AT; and (5) when p53 is activated in brown AT in mice fed a high-fat diet, it increases brown AT temperature and brown AT marker gene expression, thereby contributing to reduced fat mass accumulation. In addition, p53 is increasingly being recognized as crucial player in nutrient sensing pathways. Hence, despite existence of contradictory findings and a varying density of evidence, several functions of p53 in adipocytes and ATs have been emerging, positioning p53 as an essential regulatory hub in ATs. Future studies need to make use of more sophisticated in vivo model systems and should identify an AT-specific set of p53 target genes and downstream pathways upon different (nutrient) challenges to identify novel therapeutic targets to curb metabolic diseases.
ohne abstract
Dermal Delivery of the High-Molecular-Weight Drug Tacrolimus by Means of Polyglycerol-Based Nanogels
(2019)
Polyglycerol-based thermoresponsive nanogels (tNGs) have been shown to have excellent skin hydration properties and to be valuable delivery systems for sustained release of drugs into skin. In this study, we compared the skin penetration of tacrolimus formulated in tNGs with a commercial 0.1% tacrolimus ointment. The penetration of the drug was investigated in ex vivo abdominal and breast skin, while different methods for skin barrier disruption were investigated to improve skin permeability or simulate inflammatory conditions with compromised skin barrier. The amount of penetrated tacrolimus was measured in skin extracts by liquid chromatography tandem-mass spectrometry (LC-MS/MS), whereas the inflammatory markers IL-6 and IL-8 were detected by enzyme-linked immunosorbent assay (ELISA). Higher amounts of tacrolimus penetrated in breast as compared to abdominal skin or in barrier-disrupted as compared to intact skin, confirming that the stratum corneum is the main barrier for tacrolimus skin penetration. The anti-proliferative effect of the penetrated drug was measured in skin tissue/Jurkat cells co-cultures. Interestingly, tNGs exhibited similar anti-proliferative effects as the 0.1% tacrolimus ointment. We conclude that polyglycerol-based nanogels represent an interesting alternative to paraffin-based formulations for the treatment of inflammatory skin conditions.
Background: Obesity is a risk factor for diseases including type 2 diabetes mellitus (T2DM) and cardiovascular disorders. Diabetes itself contributes to cardiac damage. Thus, studying cardiovascular events and establishing therapeutic intervention in the period of type T2DM onset and manifestation are of highest importance. Mitochondrial dysfunction is one of the pathophysiological mechanisms leading to impaired cardiac function. Methods: An adequate animal model for studying pathophysiology of T2DM is the New Zealand Obese (NZO) mouse. These mice were maintained on a high-fat diet (HFD) without carbohydrates for 13 weeks followed by 4 week HFD with carbohydrates. NZO mice developed severe obesity and only male mice developed manifest T2DM. We determined cardiac phenotypes and mitochondrial function as well as cardiomyocyte signaling in this model. Results: The development of an obese phenotype and T2DM in male mice was accompanied by an impaired systolic function as judged by echocardiography and MyH6/7 expression. Moreover, the mitochondrial function only in male NZO hearts was significantly reduced and ERK1/2 and AMPK protein levels were altered. Conclusions: This is the first report demonstrating that the cardiac phenotype in male diabetic NZO mice is associated with impaired cardiac energy function and signaling events.
The brain orchestrates organ function and regulates whole body metabolism by the concerted action of neurons and glia cells in the central nervous system. To do so, the brain has tremendously high energy consumption and relies mainly on glucose utilization and mitochondrial function in order to exert its function. As a consequence of high rate metabolism, mitochondria in the brain accumulate errors over time, such as mitochondrial DNA (mtDNA) mutations, reactive oxygen species, and misfolded and aggregated proteins. Thus, mitochondria need to employ specific mechanisms to avoid or ameliorate the rise of damaged proteins that contribute to aberrant mitochondrial function and oxidative stress. To maintain mitochondria homeostasis (mitostasis), cells evolved molecular chaperones that shuttle, refold, or in coordination with proteolytic systems, help to maintain a low steady-state level of misfolded/aggregated proteins. Their importance is exemplified by the occurrence of various brain diseases which exhibit reduced action of chaperones. Chaperone loss (expression and/or function) has been observed during aging, metabolic diseases such as type 2 diabetes and in neurode-generative diseases such as Alzheimer's (AD), Parkinson's (PD) or even Huntington's (HD) diseases, where the accumulation of damage proteins is evidenced. Within this perspective, we propose that proper brain function is maintained by the joint action of mitochondrial chaperones to ensure and maintain mitostasis contributing to brain health, and that upon failure, alter brain function which can cause metabolic diseases.
Breaking the barrier
(2018)
Topical administration permits targeted, sustained delivery of therapeutics to human skin. Delivery to the skin, however, is typically limited to lipophilic molecules with molecular weight of < 500 Da, capable of crossing the stratum corneum. Nevertheless, there are indications protein delivery may be possible in barrier deficient skin, a condition found in several inflammatory skin diseases such as psoriasis, using novel nanocarrier systems.
Methods: Water in water thermo-nanoprecipitation; dynamic light scattering; zeta potential measurement; nanoparticle tracking analysis; atomic force microscopy; cryogenic transmission electron microscopy; UV absorption; centrifugal separation membranes; bicinchoninic acid assay; circular dichroism; TNF alpha binding ELISA; inflammatory skin equivalent construction; human skin biopsies; immunohistochemistry; fluorescence microscopy; western blot; monocyte derived Langerhans cells; ELISA
Results: Here, we report the novel synthesis of thermoresponsive nanogels (tNG) and the stable encapsulation of the anti-TNFa fusion protein etanercept (ETR) (similar to 150 kDa) without alteration to its structure, as well as temperature triggered release from the tNGs. Novel tNG synthesis without the use of organic solvents was conducted, permitting in situ encapsulation of protein during assembly, something that holds great promise for easy manufacture and storage. Topical application of ETR loaded tNGs to inflammatory skin equivalents or tape striped human skin resulted in efficient ETR delivery throughout the SC and into the viable epidermis that correlated with clear anti-inflammatory effects. Notably, effective ETR delivery depended on temperature triggered release following topical application.
Conclusion: Together these results indicate tNGs hold promise as a biocompatible and easy to manufacture vehicle for stable protein encapsulation and topical delivery into barrier-deficient skin.