Refine
Year of publication
Document Type
- Article (28109)
- Doctoral Thesis (5568)
- Monograph/edited volume (5219)
- Postprint (2839)
- Review (1951)
- Preprint (566)
- Other (435)
- Conference Proceeding (422)
- Part of Periodical (382)
- Part of a Book (373)
Language
- German (23021)
- English (22411)
- Spanish (318)
- French (301)
- Russian (104)
- Italian (95)
- Multiple Languages (65)
- Polish (22)
- Portuguese (19)
- Hebrew (17)
Keywords
- Germany (141)
- Deutschland (118)
- climate change (98)
- Patholinguistik (70)
- patholinguistics (70)
- Sprachtherapie (69)
- European Union (67)
- Europäische Union (64)
- morphology (60)
- Außenpolitik (57)
Institute
- Institut für Physik und Astronomie (4302)
- Institut für Biochemie und Biologie (4244)
- Institut für Chemie (2797)
- Institut für Geowissenschaften (2720)
- Wirtschaftswissenschaften (2453)
- Historisches Institut (2042)
- Institut für Romanistik (1941)
- Institut für Mathematik (1878)
- Department Psychologie (1862)
- Sozialwissenschaften (1768)
- Institut für Germanistik (1314)
- Department Erziehungswissenschaft (1258)
- Institut für Umweltwissenschaften und Geographie (1173)
- Department Sport- und Gesundheitswissenschaften (1112)
- Department Linguistik (1103)
- MenschenRechtsZentrum (1055)
- Extern (1052)
- Institut für Jüdische Studien und Religionswissenschaft (1009)
- Institut für Informatik und Computational Science (990)
- Institut für Ernährungswissenschaft (948)
- Öffentliches Recht (867)
- Bürgerliches Recht (845)
- Institut für Anglistik und Amerikanistik (685)
- WeltTrends e.V. Potsdam (611)
- Department Grundschulpädagogik (582)
- Institut für Slavistik (555)
- Mathematisch-Naturwissenschaftliche Fakultät (519)
- Philosophische Fakultät (509)
- Vereinigung für Jüdische Studien e. V. (405)
- Institut für Künste und Medien (331)
- Strafrecht (309)
- Strukturbereich Kognitionswissenschaften (300)
- Humanwissenschaftliche Fakultät (279)
- Lehreinheit für Wirtschafts-Arbeit-Technik (271)
- Hasso-Plattner-Institut für Digital Engineering gGmbH (250)
- Department für Inklusionspädagogik (225)
- Department für Ästhetische Bildung: Kunst, Musik, Sportpädagogik (217)
- Kommunalwissenschaftliches Institut (211)
- Zentrum für Umweltwissenschaften (164)
- Zentrum für Lehrerbildung und Bildungsforschung (ZeLB) (134)
- Interdisziplinäres Zentrum für Dynamik komplexer Systeme (120)
- Referat für Presse- und Öffentlichkeitsarbeit (104)
- Klassische Philologie (96)
- Institut für Philosophie (95)
- Strukturbereich Bildungswissenschaften (91)
- Zentrum für Gerechtigkeitsforschung (87)
- Arbeitskreis Militär und Gesellschaft in der Frühen Neuzeit e. V. (82)
- Hasso-Plattner-Institut für Digital Engineering GmbH (79)
- Zentrum für Sprachen und Schlüsselkompetenzen (Zessko) (78)
- Verband für Patholinguistik e. V. (vpl) (75)
- An-Institute (72)
- Wirtschafts- und Sozialwissenschaftliche Fakultät (65)
- Institut für Religionswissenschaft (60)
- Zentrum für Qualitätsentwicklung in Lehre und Studium (ZfQ) (54)
- Universitätsbibliothek (48)
- ZIM - Zentrum für Informationstechnologie und Medienmanagement (47)
- Berlin Potsdam Research Group "The International Rule of Law - Rise or Decline?" (46)
- Universitätsleitung und Verwaltung (33)
- Zentrum für Lern- und Lehrforschung (30)
- Fachgruppe Politik- & Verwaltungswissenschaft (28)
- Institut für Jüdische Theologie (26)
- Interdisziplinäres Zentrum für Dünne Organische und Biochemische Schichten (26)
- Sonderforschungsbereich 632 - Informationsstruktur (25)
- Center for Economic Policy Analysis (CEPA) (24)
- Fachgruppe Volkswirtschaftslehre (24)
- Fachgruppe Betriebswirtschaftslehre (23)
- Interdisziplinäres Zentrum für Musterdynamik und Angewandte Fernerkundung (23)
- Juristische Fakultät (22)
- Moses Mendelssohn Zentrum für europäisch-jüdische Studien e. V. (21)
- Institut für Lebensgestaltung-Ethik-Religionskunde (19)
- Dezernat 2: Studienangelegenheiten (16)
- Potsdam Transfer - Zentrum für Gründung, Innovation, Wissens- und Technologietransfer (14)
- Interdisziplinäres Zentrum für Biopolymere (12)
- Organe und Gremien (11)
- Institut für angewandte Familien-, Kindheits- und Jugendforschung e.V. (10)
- Potsdam Research Institute for Multilingualism (PRIM) (10)
- Präsident | Vizepräsidenten (8)
- Netzwerk Studienqualität Brandenburg (sqb) (7)
- Zentrum für Australienforschung (6)
- Fachgruppe Soziologie (5)
- Potsdam Institute for Climate Impact Research (PIK) e. V. (5)
- Kanonistisches Institut e.V. (4)
- Multilingualism (4)
- Akademie für Psychotherapie und Interventionsforschung GmbH (3)
- Interdisziplinäres Zentrum für Kognitive Studien (3)
- eLiS - E-Learning in Studienbereichen (3)
- Deutsches MEGA-Konsortialbüro an der Universität Potsdam (2)
- Hochschulambulanz (2)
- Kanzler (2)
- Kommissionen des Senats (2)
- Senat (2)
- Abraham Geiger Kolleg gGmbH (1)
- Career Service (1)
- Evangelisches Institut für Kirchenrecht e.V. (1)
- Gesundheitsmanagement (1)
- Gleichstellungsbeauftragte (1)
- Interdisziplinäres Zentrum für Massenspektronomie von Biopolymeren (1)
- Language Acquisition (1)
- Potsdam Graduate School (1)
- Präsidialamt (1)
- Redaktion *studere (1)
- Studierendenparlament (StuPa) (1)
- Syntax, Morphology & Variability (1)
- UP Transfer (1)
- Zentrale und wissenschaftliche Einrichtungen (1)
Zirconia-based cast refractories are widely used for glass furnace applications. Since they have to withstand harsh chemical as well as thermo-mechanical environments, internal stresses and microcracking are often present in such materials under operating conditions (sometimes in excess of 1700 °C). We studied the evolution of thermal (CTE) and mechanical (Young’s modulus) properties as a function of temperature in a fused-cast refractory containing 94 wt.% of monoclinic ZrO2 and 6 wt.% of a silicate glassy phase. With the aid of X-ray refraction techniques (yielding the internal specific surface in materials), we also monitored the evolution of microcracking as a function of thermal cycles (crossing the martensitic phase transformation around 1000 °C) under externally applied stress. We found that external compressive stress leads to a strong decrease of the internal surface per unit volume, but a tensile load has a similar (though not so strong) effect. In agreement with existing literature on β-eucryptite microcracked ceramics, we could explain these phenomena by microcrack closure in the load direction in the compression case, and by microcrack propagation (rather than microcrack nucleation) under tensile conditions.
Core Ideas
3D MRI relaxation time maps reflect water mobility in root, rhizosphere, and soil.
3D NCT water content maps of the same plant complement relaxation time maps.
The relaxation time T1 decreases from soil to root, whereas water content increases.
Parameters together indicate modification of rhizosphere pore space by gel phase.
The zone of reduced T1 corresponds to the zone remaining dry after rewetting.
In situ investigations of the rhizosphere require high‐resolution imaging techniques, which allow a look into the optically opaque soil compartment. We present the novel combination of magnetic resonance imaging (MRI) and neutron computed tomography (NCT) to achieve synergistic information such as water mobility in terms of three‐dimensional (3D) relaxation time maps and total water content maps. Besides a stationary MRI scanner for relaxation time mapping, we used a transportable MRI system on site in the NCT facility to capture rhizosphere properties before desiccation and after subsequent rewetting. First, we addressed two questions using water‐filled test capillaries between 0.1 and 5 mm: which root diameters can still be detected by both methods, and to what extent are defined interfaces blurred by these imaging techniques? Going to real root system architecture, we demonstrated the sensitivity of the transportable MRI device by co‐registration with NCT and additional validation using X‐ray computed tomography. Under saturated conditions, we observed for the rhizosphere in situ a zone with shorter T1 relaxation time across a distance of about 1 mm that was not caused by reduced water content, as proven by successive NCT measurements. We conclude that the effective pore size in the pore network had changed, induced by a gel phase. After rewetting, NCT images showed a dry zone persisting while the MRI intensity inside the root increased considerably, indicating water uptake from the surrounding bulk soil through the still hydrophobic rhizosphere. Overall, combining NCT and MRI allows a more detailed analysis of the rhizosphere's functioning.
3-Bromopyruvic acid (3BP) is a potential anticancer drug, the action of which on cellular metabolism is not yet entirely clear. The presence of a bromine atom suggests that it is also reactive towards low-energy electrons, which are produced in large quantities during tumour radiation therapy. Detailed knowledge of the interaction of 3BP with secondary electrons is a prerequisite to gain a complete picture of the effects of 3BP in different forms of cancer therapy. Herein, dissociative electron attachment (DEA) to 3BP in the gas phase has been studied both experimentally by using a crossed-beam setup and theoretically through scattering and quantum chemical calculations. These results are complemented by a vacuum ultraviolet absorption spectrum. The main fragmentation channel is the formation of Br- close to 0 eV and within several resonant features at 1.9 and 3-8 eV. At low electron energies, Br- formation proceeds through sigma* and pi* shape resonances, and at higher energies through core-excited resonances. It is found that the electron-capture cross-section is clearly increased compared with that of non-brominated pyruvic acid, but, at the same time, fragmentation reactions through DEA are significantly altered as well. The 3BP transient negative ion is subject to a lower number of fragmentation reactions than those of pyruvic acid, which indicates that 3BP could indeed act by modifying the electron-transport chains within oxidative phosphorylation. It could also act as a radio-sensitiser.
Widely used diagnostic tools make use of antibodies recognizing targeted molecules, but additional techniques are required in order to alleviate the disadvantages of antibodies. Herein, molecular dynamic calculations are performed for the design of high affinity artificial protein binding surfaces for the recognition of neuron specific enolase (NSE), a known cancer biomarker. Computational simulations are employed to identify particularly stabile secondary structure elements. These epitopes are used for the subsequent molecular imprinting, where surface imprinting approach is applied. The molecular imprints generated with the calculated epitopes of greater stability (Cys-Ep1) show better binding properties than those of lower stability (Cys-Ep5). The average binding strength of imprints created with stabile epitopes is found to be around twofold and fourfold higher for the NSE derived peptide and NSE protein, respectively. The recognition of NSE is investigated in a wide concentration range, where high sensitivity (limit of detection (LOD) = 0.5 ng mL(-1)) and affinity (dissociation constant (K-d) = 5.3 x 10(-11)m) are achieved using Cys-Ep1 imprints reflecting the stable structure of the template molecules. This integrated approach employing stability calculations for the identification of stabile epitopes is expected to have a major impact on the future development of high affinity protein capturing binders.
Gold at the nanoscale
(2020)
In this cumulative dissertation, I want to present my contributions to the field of plasmonic nanoparticle science. Plasmonic nanoparticles are characterised by resonances of the free electron gas around the spectral range of visible light. In recent years, they have evolved as promising components for light based nanocircuits, light harvesting, nanosensors, cancer therapies, and many more.
This work exhibits the articles I authored or co-authored in my time as PhD student at the University of Potsdam. The main focus lies on the coupling between localised plasmons and excitons in organic dyes. Plasmon–exciton coupling brings light–matter coupling to the nanoscale. This size reduction is accompanied by strong enhancements of the light field which can, among others, be utilised to enhance the spectroscopic footprint of molecules down to single molecule detection, improve the efficiency of solar cells, or establish lasing on the nanoscale. When the coupling exceeds all decay channels, the system enters the strong coupling regime. In this case, hybrid light–matter modes emerge utilisable as optical switches, in quantum networks, or as thresholdless lasers. The present work investigates plasmon–exciton coupling in gold–dye core–shell geometries and contains both fundamental insights and technical novelties. It presents a technique which reveals the anticrossing in coupled systems without manipulating the particles themselves. The method is used to investigate the relation between coupling strength and particle size. Additionally, the work demonstrates that pure extinction measurements can be insufficient when trying to assess the coupling regime. Moreover, the fundamental quantum electrodynamic effect of vacuum induced saturation is introduced. This effect causes the vacuum fluctuations to diminish the polarisability of molecules and has not yet been considered in the plasmonic context.
The work additionally discusses the reaction of gold nanoparticles to optical heating. Such knowledge is of great importance for all potential optical applications utilising plasmonic nanoparticles since optical excitation always generates heat. This heat can induce a change in the optical properties, but also mechanical changes up to melting can occur. Here, the change of spectra in coupled plasmon–exciton particles is discussed and explained with a precise model. Moreover, the work discusses the behaviour of gold nanotriangles exposed to optical heating. In a pump–probe measurement, X-ray probe pulses directly monitored the particles’ breathing modes. In another experiment, the triangles were exposed to cw laser radiation with varying intensities and illumination areas. X-ray diffraction directly measured the particles’ temperature. Particle melting was investigated with surface enhanced Raman spectroscopy and SEM imaging demonstrating that larger illumination areas can cause melting at lower intensities. An elaborate methodological and theoretical introduction precedes the articles. This way, also readers without specialist’s knowledge get a concise and detailed overview of the theory and methods used in the articles. I introduce localised plasmons in metal nanoparticles of different shapes. For this work, the plasmons were mostly coupled to excitons in J-aggregates. Therefore, I discuss these aggregates of organic dyes with sharp and intense resonances and establish an understanding of the coupling between the two systems. For ab initio simulations of the coupled systems, models for the systems’ permittivites are presented, too. Moreover, the route to the sample fabrication – the dye coating of gold nanoparticles, their subsequent deposition on substrates, and the covering with polyelectrolytes – is presented together with the measurement methods that were used for the articles.
Reviews and syntheses
(2018)
The cycling of carbon (C) between the Earth surface and the atmosphere is controlled by biological and abiotic processes that regulate C storage in biogeochemical compartments and release to the atmosphere. This partitioning is quantified using various forms of C-use efficiency (CUE) - the ratio of C remaining in a system to C entering that system. Biological CUE is the fraction of C taken up allocated to biosynthesis. In soils and sediments, C storage depends also on abiotic processes, so the term C-storage efficiency (CSE) can be used. Here we first review and reconcile CUE and CSE definitions proposed for autotrophic and heterotrophic organisms and communities, food webs, whole ecosystems and watersheds, and soils and sediments using a common mathematical framework. Second, we identify general CUE patterns; for example, the actual CUE increases with improving growth conditions, and apparent CUE decreases with increasing turnover. We then synthesize > 5000CUE estimates showing that CUE decreases with increasing biological and ecological organization - from uni-cellular to multicellular organisms and from individuals to ecosystems. We conclude that CUE is an emergent property of coupled biological-abiotic systems, and it should be regarded as a flexible and scale-dependent index of the capacity of a given system to effectively retain C.
Objective: The aim of the present study was to examine the effect of Cold Water Immersion (CWI) on the recovery of physical performance, hematological stress markers and perceived wellness (i.e., Hooper scores) following a simulated Mixed Martial Arts (MMA) competition.
Methods: Participants completed two experimental sessions in a counter-balanced order (CWI or passive recovery for control condition: CON), after a simulated MMAs competition (3 x 5-min MMA rounds separated by 1-min of passive rest). During CWI, athletes were required to submerge their bodies, except the trunk, neck and head, in the seated position in a temperature-controlled bath (similar to 10 degrees C) for 15-min. During CON, athletes were required to be in a seated position for 15-min in same room ambient temperature. Venous blood samples (creatine kinase, cortisol, and testosterone concentrations) were collected at rest (PRE-EX, i.e., before MMAs), immediately following MMAs (POST-EX), immediately following recovery (POST-R) and 24 h post MMAs (POST-24), whilst physical fitness (squat jump, countermovement-jump and 5- and 10-m sprints) and perceptual measures (well-being Hooper index: fatigue, stress, delayed onset muscle soreness (DOMS), and sleep) were collected at PRE-EX, POST-R and POST-24, and at PRE-EX and POST-24, respectively.
Results: The main results indicate that POST-R sprint (5- and 10-m) performances were 'likely to very likely' (d = 0.64 and 0.65) impaired by prior CWI. However, moderate improvements were in 10-m sprint performance were 'likely' evident at POST-24 after CWI compared with CON (d = 0.53). Additionally, the use of CWI 'almost certainly' resulted in a large overall improvement in Hooper scores (d = 1.93). Specifically, CWI 'almost certainly' resulted in improved sleep quality (d = 1.36), stress (d = 1.56) and perceived fatigue (d = 1.51), and 'likely' resulted in a moderate decrease in DOMS (d = 0.60).
Conclusion: The use of CWI resulted in an enhanced recovery of 10-m sprint performance, as well as improved perceived wellness 24-h following simulated MMA competition.
Testing the Consensus Model
(2018)
The structure and definition of professional knowledge is a continuing focus of science education research. In 2012, a pedagogical content knowledge (PCK) summit was held and it suggested a model of professional knowledge and skill including PCK, which was later often called the Consensus Model (Gess-Newsome, 2015. A model of teacher professional knowledge and skill including PCK: Results of the thinking from the PCK summit. In A. Berry, P. J. Friedrichsen, & J. Loughran (Eds.), Teaching and learning in science series. Re-examining pedagogical content knowledge in science education (1st ed., pp. 28–42). New York, NY: Routledge). The Consensus Model proposes a potential powerful framework for the relations among teachers’ different professional knowledge bases, but to date it has neither been investigated empirically nor systematically. In this study, we investigated the relationships suggested by the Consensus Model among different aspects of teachers’ knowledge and skill. A sample of 35 physics teachers and their classes participated in the investigation; both teachers and their students in these classes took paper-and-pencil tests. Furthermore, a lesson taught by each of the teachers was videotaped and analysed. The video analysis focused on the interconnectedness of the content structure of the lesson as representation of the in-class actions of the teachers. The interconnectedness is understood as a direct result of the application of professional knowledge of the teachers to their teaching. The teachers’ knowledge showed no significant influence on the interconnectedness of the lesson content structure. However, the results confirmed the influence of interconnectedness and certain aspects of professional knowledge on students’ outcomes. Therefore, interconnectedness of content structure could be verified as one indicator of teachers’ instructional quality.
Plant cultivation and processing may impact nutrient and phytochemical content of vegetables. The present study aimed at determining the influence of cultivation and processing on the health promoting capacity of African nightshade (Solanum scabrum Mill.) leaves, an indigenous vegetable, rich in nutrients and phytochemicals. Anti-genotoxicity against the human liver carcinogen aflatoxin B1 (AFB1) as determined by the comet assay and radical oxygen species (ROS) scavenging capacity of ethanolic and aqueous extracts were investigated in human derived liver (HepG2) cells. ROS scavenging activity was assessed using electron paramagnetic spin resonance and quantification of ARE/Nrf2 mediated gene expression. The cultivation was done under different environmental conditions. The processing included fermentation and cooking; postharvest ultraviolet irradiation (UV-C) treatment was also investigated. Overall, S. scabrum extracts showed strong health promoting potential, the highest potential was observed with the fermented extract, which showed a 60% reduction of AFB1 induced DNA damage and a 38% reduction in FeSO4 induced oxidative stress. The content of total polyphenols, carotenoids and chlorophylls was indeed affected by cultivation and processing. Based on the present in vitro findings consumption of S. scabrum leaves could be further encouraged, preferentially after cooking or fermentation of the plant.
The novel space-borne Global Navigation Satellite System Reflectometry (GNSS-R) technique has recently shown promise in monitoring the ocean state and surface wind speed with high spatial coverage and unprecedented sampling rate. The L-band signals of GNSS are structurally able to provide a higher quality of observations from areas covered by dense clouds and under intense precipitation, compared to those signals at higher frequencies from conventional ocean scatterometers. As a result, studying the inner core of cyclones and improvement of severe weather forecasting and cyclone tracking have turned into the main objectives of GNSS-R satellite missions such as Cyclone Global Navigation Satellite System (CYGNSS). Nevertheless, the rain attenuation impact on GNSS-R wind speed products is not yet well documented. Evaluating the rain attenuation effects on this technique is significant since a small change in the GNSS-R can potentially cause a considerable bias in the resultant wind products at intense wind speeds. Based on both empirical evidence and theory, wind speed is inversely proportional to derived bistatic radar cross section with a natural logarithmic relation, which introduces high condition numbers (similar to ill-posed conditions) at the inversions to high wind speeds. This paper presents an evaluation of the rain signal attenuation impact on the bistatic radar cross section and the derived wind speed. This study is conducted simulating GNSS-R delay-Doppler maps at different rain rates and reflection geometries, considering that an empirical data analysis at extreme wind intensities and rain rates is impossible due to the insufficient number of observations from these severe conditions. Finally, the study demonstrates that at a wind speed of 30 m/s and incidence angle of 30 degrees, rain at rates of 10, 15, and 20 mm/h might cause overestimation as large as approximate to 0.65 m/s (2%), 1.00 m/s (3%), and 1.3 m/s (4%), respectively, which are still smaller than the CYGNSS required uncertainty threshold. The simulations are conducted in a pessimistic condition (severe continuous rainfall below the freezing height and over the entire glistening zone) and the bias is expected to be smaller in size in real environments.
Seit einigen Jahren werden kombinatorische Aufgaben als eigenständiges Thema im Mathematikunterricht der Grundschule behandelt, das diverse Lerngelegenheiten bereithält. Dies wirft Fragen zur Bearbeitungsweise sowie zu den Repräsentationen der Schülerinnen und Schüler auf. In einer empirischen Studie (N = 548) wurden anhand von sechs Kombinatorikaufgaben Leistungen und Bearbeitungsweisen von Lernenden in der dritten Klasse erhoben. Besonderes Augenmerk wurde auf die verwendeten Darstellungen und den Abstraktionsgrad sowie den Einsatz von Makrostrategien gerichtet. Diese drei Faktoren wurden hinsichtlich ihres Einflusses auf die Lösungsgüte untersucht.
Die Ergebnisse zeigen, dass nicht alle Schülerinnen und Schüler ohne Anleitung geeignete Lösungsansätze zu kombinatorischen Problemen fanden. Die Darstellungsweise hatte einen vergleichsweise geringen Einfluss auf die Lösungsquote. Im Gegensatz dazu konnten unterschiedlich starke positive Zusammenhänge zwischen Abstraktionsgrad bzw. Strategieeinsatz und Lösungserfolg nachgewiesen werden. Aus den Ergebnissen der Studie lassen sich Schlüsse über die Vermittlung und didaktische Aufbereitung des Themenfeldes Kombinatorik in der Grundschulmathematik ziehen.
Entdeckendes Lernen
(2017)
Trotz der nachweislichen Popularität des Entdeckenden Lernens in der deutschsprachigen Mathematikdidaktik finden sich aktuell keine kritischen Beiträge, die dazu beitragen könnten, dieses grundlegende Unterrichtskonzept zu hinterfragen und auszuschärfen. In diesem Diskussionsbeitrag werden zunächst die Theorie und einige Umsetzungsbeispiele des Entdeckenden Lernens herausgearbeitet, um aufzuzeigen, dass das Entdeckende Lernen einem vagen Sammelbegriff gleicht, unter dem oft fragwürdige Unterrichtsumgebungen legitimiert werden. Anschließend werden an Hand erkenntnistheoretischer, lerntheoretischer, didaktischer und soziokultureller Betrachtungen Probleme des Entdeckenden Lernens im Mathematikunterricht und Möglichkeiten ihrer Überwindung thematisiert. Dabei zeigt sich, dass die Konzeption des Entdeckenden Lernens hinter dem aktuellen mathematikdidaktischen Erkenntnisstand zurückfällt und Lehrer sowie Schüler mit unmöglichen Forderungen konfrontiert, dass lerntheoretische Vorteile des Entdeckenden Lernens oft nicht nachweisbar sind, dass die Idee des Entdeckens auf einem problematischen platonistischen Verständnis von Erkenntnis beruht und dass Entdeckendes Lernen bildungsferne Schüler zu benachteiligen droht. Abschließend werden Forschungsdesiderata abgeleitet, deren Bearbeitung dazu beitragen könnte, die aufgezeigten Problemfelder zu überwinden.
We take an error management perspective on audit quality. Drawing on 18 months of participant observations and 38 interviews conducted in a Big 4 accounting firm, we develop a multi-level model of error management. With this model, we propose how organizational structures, team procedures and practices, and individual cognitions and emotions interact to manage errors. The multi-level model of error management allows us to conceptually integrate previous behavioral and social research on audit quality, contributes to the rising accounting firm error management literature, and explains how and why two general approaches from the broader error management literature to errors that are usually considered as opposing each other, i.e., error prevention and error resilience, may interact and actually entail each other in accounting firms.
Drawbacks of proactivity
(2016)
The benefit of proactive work behaviors for performance-related outcomes has been well established. However, this approach to studying proactivity has not yet acknowledged its potential implications for the actor’s well-being. Drawing on the fact that resources at work are limited and that the workplace is a social system characterized by interdependencies, we proposed that daily proactivity could have a negative effect on daily well-being. We furthermore proposed that this effect should be mediated by work overload and negative affect. We conducted a daily diary study (N = 72) to test the potential negative effects of proactivity on daily well-being. Data was collected across 3 consecutive work days. During several daily measurement occasions, participants reported proactivity, work overload, negative affect, and fatigue. They also provided 4 saliva samples per day, from which cortisol was assayed. Based on the 4 samples, a measure of daily cortisol output was produced. Multilevel analyses showed that daily proactivity was positively associated with higher daily cortisol output. The positive association of daily proactivity with bedtime fatigue was marginally significant. There was no support for a mediating effect of work overload and negative affect. Implications for theory-building on the proactivity–well-being link are discussed. (PsycINFO Database Record (c) 2017 APA, all rights reserved)
Enhancers are critical for developmental stage-specific gene expression, but their dynamic regulation in plants remains poorly understood. Here we compare genome-wide localization of H3K27ac, chromatin accessibility and transcriptomic changes during flower development in Arabidopsis. H3K27ac prevalently marks promoter-proximal regions, suggesting that H3K27ac is not a hallmark for enhancers in Arabidopsis. We provide computational and experimental evidence to confirm that distal DNase. hypersensitive sites are predictive of enhancers. The predicted enhancers are highly stage-specific across flower development, significantly associated with SNPs for flowering-related phenotypes, and conserved across crucifer species. Through the integration of genome-wide transcription factor (TF) binding datasets, we find that floral master regulators and stage-specific TFs are largely enriched at developmentally dynamic enhancers. Finally, we show that enhancer clusters and intronic enhancers significantly associate with stage-specific gene regulation by floral master TFs. Our study provides insights into the functional flexibility of enhancers during plant development, as well as hints to annotate plant enhancers.
Human-driven fragmentation of landscapes leads to the formation of transition zones between ecosystems that are characterised by fluxes of matter, energy and information. These transition zones may offer rather inhospitable habitats that could jeopardise biodiversity. On the other hand, transition zones are also reported to be hotspots for biodiversity and even evolutionary processes. The general mechanisms and influence of processes in transition zones are poorly understood. Although heterogeneity and diversity of land use of fragments and the transition zones between them play an important role, most studies only refer to forested transition zones. Often, only an extrapolation of measurements in the different fragments themselves is reported to determine gradients in transition zones. This paper contributes to a quantitative understanding of agricultural landscapes beyond individual ecotopes, and towards connected ecosystem mosaics that may be beneficial for the provision of ecosystem services.
Feigning Democracy
(2017)
Reducing Emissions from Deforestation and forest Degradation plus the sustainable management of forest and enhancement of carbon stocks (REDD+) is a global climate change mitigation initiative. The United Nations REDD Programme (UN-REDD) is training governments in developing countries, including Nigeria, to implement REDD+. To protect local people, UN-REDD has developed social safeguards including a commitment to strengthen local democracy to prevent an elite capture of REDD+ benefits. This study examines local participation and representation in the UN-REDD international policy board and in the national-level design process for the Nigeria-REDD proposal, to see if practices are congruent with the UN-REDD commitment to local democracy. It is based on research in Nigeria in 2012 and 2013, and finds that local representation in the UN-REDD policy board and in Nigeria-REDD is not substantive. Participation is merely symbolic. For example, elected local government authorities, who ostensibly represent rural people, are neither present in the UN-REDD board nor were they invited to the participatory forums that vetted the Nigeria-REDD. They were excluded because they were politically weak. However, UN-REDD approved the Nigeria-REDD proposal without a strategy to include or strengthen elected local governments. The study concludes with recommendations to help the UN-REDD strengthen elected local government authority in Nigeria in support of democratic local representation.
Apoptotic death of cells damaged by genotoxic stress requires regulatory input from surrounding tissues. The C. elegans scaffold protein KRI-1, ortholog of mammalian KRIT1/CCM1, permits DNA damage-induced apoptosis of cells in the germline by an unknown cell non-autonomous mechanism. We reveal that KRI-1 exists in a complex with CCM-2 in the intestine to negatively regulate the ERK-5/MAPK pathway. This allows the KLF-3 transcription factor to facilitate expression of the SLC39 zinc transporter gene zipt-2.3, which functions to sequester zinc in the intestine. Ablation of KRI-1 results in reduced zinc sequestration in the intestine, inhibition of IR-induced MPK-1/ERK1 activation, and apoptosis in the germline. Zinc localization is also perturbed in the vasculature of krit1(-/-) zebrafish, and SLC39 zinc transporters are mis-expressed in Cerebral Cavernous Malformations (CCM) patient tissues. This study provides new insights into the regulation of apoptosis by cross-tissue communication, and suggests a link between zinc localization and CCM disease.
In a recent paper [U. Lorenz and P. Saalfrank, Chem. Phys. 482, 69 (2017)], we proposed a robust scheme to set up a system-bath model Hamiltonian, describing the coupling of adsorbate vibrations (system) to surface phonons (bath), from first principles. The method is based on an embedded cluster approach, using orthogonal coordinates for system and bath modes, and an anharmonic phononic expansion of the system-bath interaction up to second order. In this contribution, we use this model Hamiltonian to calculate vibrational relaxation rates of H–Si and D–Si bending modes, coupled to a fully H(D)-covered Si(100)-(2×1) surface, at zero temperature. The D–Si bending mode has an anharmonic frequency lying inside the bath frequency spectrum, whereas the H–Si bending mode frequency is outside the bath Debye band. Therefore, in the present calculations, we only take into account one-phonon system-bath couplings for the D–Si system and both one- and two-phonon interaction terms in the case of H–Si. The computation of vibrational lifetimes is performed with two different approaches, namely, Fermi’s golden rule, and a generalized Bixon-Jortner model built in a restricted vibrational space of the adsorbate-surface zeroth-order Hamiltonian. For D–Si, the Bixon-Jortner Hamiltonian can be solved by exact diagonalization, serving as a benchmark, whereas for H–Si, an iterative scheme based on the recursive residue generation method is applied, with excellent convergence properties. We found that the lifetimes obtained with perturbation theory, albeit having almost the same order of magnitude—a few hundred fs for D–Si and a couple of ps for H–Si—, are strongly dependent on the discretized numerical representation of the bath spectral density. On the other hand, the Bixon-Jortner model is free of such numerical deficiencies, therefore providing better estimates of vibrational relaxation rates, at a very low computational cost. The results obtained with this model clearly show a net exponential decay of the time-dependent survival probability for the H–Si initial vibrational state, allowing an easy extraction of the bending mode “lifetime.” This is in contrast with the D–Si system, whose survival probability exhibits a non-monotonic decay, making it difficult to define such a lifetime. This different behavior of the vibrational decay is rationalized in terms of the power spectrum of the adsorbate-surface system. In the case of D–Si, it consists of several, non-uniformly distributed peaks around the bending mode frequency, whereas the H–Si spectrum exhibits a single Lorentzian lineshape, whose width corresponds to the calculated lifetime. The present work gives some insight into mechanisms of vibration-phonon coupling at surfaces. It also serves as a benchmark for multidimensional system-bath quantum dynamics, for comparison with approximate schemes such as reduced, open-system density matrix theory (where the bath is traced out and a Liouville-von Neumann equation is solved) or approximate wavefunction methods to solve the combined system-bath Schrödinger equation.
New hybrid clay materials with good affinity for phosphate ions were developed from a combination of biomass-Carica papaya seeds (PS) and Musa paradisiaca (Plantain peels-PP), ZnCl2 and Kaolinite clay to produce iPS-HYCA and iPP-HYCA composite adsorbents respectively. Functionalization of these adsorbents with an organosilane produced NPS-HYCA and NPP-HYCA composite adsorbents. The pH(pzc) for the adsorbents were 7.83, 6.91, 7.66 and 6.55 for iPS-HYCA, NPS-HYCA, iPP-HYCA and NPP-HYCA respectively. Using the Brouer-Sotolongo isotherm model which best predict the adsorption capacity of composites for phosphate, iPP-HYCA, iPS-HYCA, NPP-HYCA, and NPS-HYCA composite adsorbents respectively. When compared with some commercial resins, the amino-functionalized adsorbents had better adsorption capacities. Furthermore, amino-functionalized adsorbents showed improved adsorption capacity and rate of phosphate uptake (as much as 40-fold), as well as retain 94% (for NPS-HYCA) and 84.1% (for NPP-HYCA) efficiency for phosphate adsorption after 5 adsorption-desorption cycles (96 h of adsorption time with 100 mg/L of phosphate ions) as against 37.5% (for iPS-HYCA) and 35% (for iPP-HYCA) under similar conditions. In 25 min desorption of phosphate ion attained equilibrium. These new amino-functionalized hybrid clay composite adsorbents, which were prepared by a simple means that is sustainable, have potentials for the efficient capture of phosphate ions from aqueous solution. They are quickly recovered from aqueous solution, non-biodegradable (unlike many biosorbent) with potentials to replace expensive adsorbents in the future. They have the further advantage of being useful in the recovery of phosphate for use in agriculture which could positively impact the global food security programme. (C) 2017 Elsevier Ltd. All rights reserved.
Background: Severe bacterial infections remain a major challenge in intensive care units because of their high prevalence and mortality. Adequate antibiotic exposure has been associated with clinical success in critically ill patients. The objective of this study was to investigate the target attainment of standard meropenem dosing in a heterogeneous critically ill population, to quantify the impact of the full renal function spectrum on meropenem exposure and target attainment, and ultimately to translate the findings into a tool for practical application. Methods: A prospective observational single-centre study was performed with critically ill patients with severe infections receiving standard dosing of meropenem. Serial blood samples were drawn over 4 study days to determine meropenem serum concentrations. Renal function was assessed by creatinine clearance according to the Cockcroft and Gault equation (CLCRCG). Variability in meropenem serum concentrations was quantified at the middle and end of each monitored dosing interval. The attainment of two pharmacokinetic/pharmacodynamic targets (100% T->MIC, 50% T->4xMIC) was evaluated for minimum inhibitory concentration (MIC) values of 2 mg/L and 8 mg/L and standard meropenem dosing (1000 mg, 30-minute infusion, every 8 h). Furthermore, we assessed the impact of CLCRCG on meropenem concentrations and target attainment and developed a tool for risk assessment of target non-attainment. Results: Large inter-and intra-patient variability in meropenem concentrations was observed in the critically ill population (n = 48). Attainment of the target 100% T->MIC was merely 48.4% and 20.6%, given MIC values of 2 mg/L and 8 mg/L, respectively, and similar for the target 50% T->4xMIC. A hyperbolic relationship between CLCRCG (25-255 ml/minute) and meropenem serum concentrations at the end of the dosing interval (C-8h) was derived. For infections with pathogens of MIC 2 mg/L, mild renal impairment up to augmented renal function was identified as a risk factor for target non-attainment (for MIC 8 mg/L, additionally, moderate renal impairment). Conclusions: The investigated standard meropenem dosing regimen appeared to result in insufficient meropenem exposure in a considerable fraction of critically ill patients. An easy-and free-to-use tool (the MeroRisk Calculator) for assessing the risk of target non-attainment for a given renal function and MIC value was developed.
The Norwegian young sea ICE (N-ICE2015) expedition was designed to investigate the atmosphere-snow-ice-ocean interactions in the young and thin sea ice regime north of Svalbard. Radiosondes were launched twice daily during the expedition from January to June 2015. Here we use these upper air measurements to study the multiple cyclonic events observed during N-ICE2015 with respect to changes in the vertical thermodynamic structure, moisture content, and boundary layer characteristics. We provide statistics of temperature inversion characteristics, static stability, and boundary layer extent. During winter, when radiative cooling is most effective, we find the strongest impact of synoptic cyclones. Changes to thermodynamic characteristics of the boundary layer are associated with transitions between the radiatively "clear" and "opaque" atmospheric states. In spring, radiative fluxes warm the surface leading to lifted temperature inversions and a statically unstable boundary layer. Further, we compare the N-ICE2015 static stability distributions to corresponding profiles from ERA-Interim reanalysis, from the closest land station in the Arctic North Atlantic sector, Ny-Alesund, and to soundings from the SHEBA expedition (1997/1998). We find similar stability characteristics for N-ICE2015 and SHEBA throughout the troposphere, despite differences in location, sea ice thickness, and snow cover. For Ny-Alesund, we observe similar characteristics above 1000 m, while the topography and ice-free fjord surrounding Ny-Alesund generate great differences below. The long-term radiosonde record (1993-2014) from Ny-Alesund indicates that during the N-ICE2015 spring period, temperatures were close to the climatological mean, while the lowest 3000 m were 1-3 degrees C warmer than the climatology during winter. Plain Language Summary The Norwegian young sea ICE (N-ICE2015) expedition was designed to investigate the atmosphere-snow-ice-ocean interactions in the young and thin sea ice regime north of Svalbard. Radiosondes were launched twice daily during the expedition from January to June 2015. Here we use these upper air measurements to study the multiple cyclonic events observed during N-ICE2015 with respect to changes in the vertical thermodynamic structure, moisture content, and the atmospheric boundary layer characteristics. During winter, we find the strongest impact of synoptic cyclones, which transport warm and moist air into the cold and dry Arctic atmosphere. In spring, incoming solar radiation warms the surface. This leads to very different thermodynamic conditions and higher moisture content, which reduces the contrast between stormy and calm periods. Further, we compare the N-ICE2015 measurements to corresponding profiles from ERA-Interim reanalysis, from the closest land station in the Arctic North Atlantic sector, Ny-Alesund, and to soundings from the SHEBA expedition (1997/1998). We find similar stability characteristics for N-ICE2015 and SHEBA throughout the troposphere, despite differences in location, sea ice thickness, and snow cover. The comparisons highlight the value of the N-ICE2015 observation and show the importance of winter time observations in the Arctic North Atlantic sector.
We present measurements of the large-scale (≈40 comoving Mpc) effective optical depth of He ii Lyα absorption, ${\tau }_{\mathrm{eff}}$, at 2.54 < z < 3.86 toward 16 He ii-transparent quasars observed with the Cosmic Origins Spectrograph on the Hubble Space Telescope, to characterize the ionization state of helium in the intergalactic medium (IGM). We provide the first statistical sample of ${\tau }_{\mathrm{eff}}$ measurements in six signal-to-noise ratio gsim3 He ii sightlines at z > 3.5, and study the redshift evolution and sightline-to-sightline variance of ${\tau }_{\mathrm{eff}}$ in 24 He ii sightlines. We confirm an increase of the median ${\tau }_{\mathrm{eff}}$ from sime2 at z = 2.7 to ${\tau }_{\mathrm{eff}}\gtrsim 5$ at z > 3, and a scatter in ${\tau }_{\mathrm{eff}}$ that increases with redshift. The z > 3.5 He ii absorption is predominantly saturated, but isolated narrow (Δv < 650 km s−1) transmission spikes indicate patches of reionized helium. We compare our measurements to predictions for a range of UV background models applied to outputs of a large-volume (146 comoving Mpc)3 hydrodynamical simulation by forward-modeling our sample's quality and size. At z > 2.74, the variance in ${\tau }_{\mathrm{eff}}$ significantly exceeds expectations for a spatially uniform UV background, but is consistent with a fluctuating radiation field sourced by variations in the quasar number density and the mean free path in the post-reionization IGM. We develop a method to infer the approximate median He ii photoionization rate ${{\rm{\Gamma }}}_{\mathrm{He}{\rm{II}}}$ of a fluctuating UV background from the median ${\tau }_{\mathrm{eff}}$, finding a factor sime5 decrease in ${{\rm{\Gamma }}}_{\mathrm{He}{\rm{II}}}$ between z sime 2.6 and z sime 3.1. At z sime 3.1, ${{\rm{\Gamma }}}_{\mathrm{He}{\rm{II}}}=\left[{9.1}_{-1.2}^{+1.1}\,(\mathrm{stat}.){\,}_{-3.4}^{+2.4}\,(\mathrm{sys}.)\right]\times {10}^{-16}$ s−1 corresponds to a median He ii fraction of sime2.5%, indicating that our data probe the tail end of He ii reionization.
plasp 3
(2019)
We describe the new version of the Planning Domain Definition Language (PDDL)-to-Answer Set Programming (ASP) translator plasp. First, it widens the range of accepted PDDL features. Second, it contains novel planning encodings, some inspired by Satisfiability Testing (SAT) planning and others exploiting ASP features such as well-foundedness. All of them are designed for handling multivalued fluents in order to capture both PDDL as well as SAS planning formats. Third, enabled by multishot ASP solving, it offers advanced planning algorithms also borrowed from SAT planning. As a result, plasp provides us with an ASP-based framework for studying a variety of planning techniques in a uniform setting. Finally, we demonstrate in an empirical analysis that these techniques have a significant impact on the performance of ASP planning.
The electric field-dependence of structural dynamics in a tetragonal ferroelectric lead zirconate titanate thin film is investigated under subcoercive and above-coercive fields using time-resolved X-ray diffraction. The domain nucleation and growth are monitored in real time during the application of an external field to the prepoled thin film capacitor. We propose the observed broadening of the in-plane peak width of the symmetric 002 Bragg reflection as an indicator of the domain disorder and discuss the processes that change the measured peak intensity. Subcoercive field switching results in remnant disordered domain configurations. Published under license by AIP Publishing.
We discuss recent investigations of the interaction of polyelectrolytes with proteins. In particular, we review our recent studies on the interaction of simple proteins such as human serum albumin (HSA) and lysozyme with linear polyelectrolytes, charged dendrimers, charged networks, and polyelectrolyte brushes. In all cases discussed here, we combined experimental work with molecular dynamics (MD) simulations and mean-field theories. In particular, isothermal titration calorimetry (ITC) has been employed to obtain the respective binding constants K-b and the Gibbs free energy of binding. MD simulations with explicit counterions but implicit water demonstrate that counterion release is the main driving force for the binding of proteins to strongly charged polyelectrolytes: patches of positive charges located on the surface of the protein become multivalent counterions of the polyelectrolyte, thereby releasing a number of counterions condensed on the polyelectrolyte. The binding Gibbs free energy due to counterion release is predicted to scale with the logarithm of the salt concentration in the system, which is verified by both simulations and experiment. In several cases, namely, for the interaction of proteins with linear polyelectrolytes and highly charged hydrophilic dendrimers, the binding constant could be calculated from simulations to very good approximation. This finding demonstrated that in these cases explicit hydration effects do not contribute to the Gibbs free energy of binding. The Gibbs free energy can also be used to predict the kinetics of protein uptake by microgels for a given system by applying dynamic density functional theory. The entire discussion demonstrates that the direct comparison of theory with experiments can lead to a full understanding of the interaction of proteins with charged polymers. Possible implications for applications, such as drug design, are discussed.
Research question: The purpose of this study was to evaluate the test-retest reliability of lower extremity kinematics during squat, hip abduction and lunge exercises captured by the Kinect and to evaluate the agreement to a reference 3D camera-based motion system. Methods: Twenty-one healthy individuals performed five repetitions of each lower limb exercise on two different days. Movements were simultaneously assessed by the Kinect and the reference 3D motion system. Joint angles and positions of the lower limb were calculated for sagittal and frontal plane. For the inter-session reliability and the agreement between the two systems standard error of measurement (SEM), bias with limits of agreement (LoA) and Pearson Correlation Coefficient (r) were calculated. Results: Parameters indicated varying reliability for the assessed joint angles and positions and decreasing reliability with increasing task complexity. Across all exercises, measurement deviations were shown especially for small movement amplitudes. Variability was acceptable for joint angles and positions during the squat, partially acceptable during the hip abduction and predominately inacceptable during the lunge. The agreement between systems was characterized by systematic errors. Overestimations by the Kinect were apparent for hip flexion during the squat and hip abduction/adduction during the hip abduction exercise as well as for the knee positions during the lunge. Knee and hip flexion during hip abduction and lunge were underestimated by the Kinect. Significance: The Kinect system can reliably assess lower limb joint angles and positions during simple exercises. The validity of the system is however restricted. An application in the field of early orthopedic rehabilitation without further development of post-processing techniques seems so far limited.
Modern 3D geovisualization systems (3DGeoVSs) are complex and evolving systems that are required to be adaptable and leverage distributed resources, including massive geodata. This article focuses on 3DGeoVSs built based on the principles of service-oriented architectures, standards and image-based representations (SSI) to address practically relevant challenges and potentials. Such systems facilitate resource sharing and agile and efficient system construction and change in an interoperable manner, while exploiting images as efficient, decoupled and interoperable representations. The software architecture of a 3DGeoVS and its underlying visualization model have strong effects on the system's quality attributes and support various system life cycle activities. This article contributes a software reference architecture (SRA) for 3DGeoVSs based on SSI that can be used to design, describe and analyze concrete software architectures with the intended primary benefit of an increase in effectiveness and efficiency in such activities. The SRA integrates existing, proven technology and novel contributions in a unique manner. As the foundation for the SRA, we propose the generalized visualization pipeline model that generalizes and overcomes expressiveness limitations of the prevalent visualization pipeline model. To facilitate exploiting image-based representations (IReps), the SRA integrates approaches for the representation, provisioning and styling of and interaction with IReps. Five applications of the SRA provide proofs of concept for the general applicability and utility of the SRA. A qualitative evaluation indicates the overall suitability of the SRA, its applications and the general approach of building 3DGeoVSs based on SSI.
Identification of YdhV as the First Molybdoenzyme Binding a Bis-Mo-MPT Cofactor in Escherichia coli
(2019)
The oxidoreductase YdhV in Escherichia coli has been predicted to belong to the family of molybdenum/tungsten cofactor (Moco/Wco)-containing enzymes. In this study, we characterized the YdhV protein in detail, which shares amino acid sequence homology with a tungsten-containing benzoyl-CoA reductase binding the bis-W-MPT (for metal-binding pterin) cofactor. The cofactor was identified to be of a bis-Mo-MPT type with no guanine nucleotides present, which represents a form of Moco that has not been found previously in any molybdoenzyme. Our studies showed that YdhV has a preference for bis-Mo-MPT over bis-W-MPT to be inserted into the enzyme. In-depth characterization of YdhV by X-ray absorption and electron paramagnetic resonance spectroscopies revealed that the bis-Mo-MPT cofactor in YdhV is redox active. The bis-Mo-MPT and bis-W-MPT cofactors include metal centers that bind the four sulfurs from the two dithiolene groups in addition to a cysteine and likely a sulfido ligand. The unexpected presence of a bis-Mo-MPT cofactor opens an additional route for cofactor biosynthesis in E. coli and expands the canon of the structurally highly versatile molybdenum and tungsten cofactors.
Strategies to surface-functionalize scaffolds by covalent binding of biologically active compounds are of fundamental interest to control the interactions between scaffolds and biomolecules or cells. Poly(para-dioxanone) (PPDO) is a clinically established polymer that has shown potential as temporary implant, eg, for the reconstruction of the inferior vena cava, as a nonwoven fiber mesh. However, PPDO lacks suitable chemical groups for covalent functionalization. Furthermore, PPDO is highly sensitive to hydrolysis, reflected by short in vivo half-life times and degradation during storage. Establishing a method for covalent functionalization without degradation of this hydrolyzable polymer is therefore important to enable the surface tailoring for tissue engineering applications. It was hypothesized that treatment of PPDO with an N-hydroxysuccinimide ester group bearing perfluorophenyl azide (PFPA) under UV irradiation would allow efficient surface functionalization of the scaffold. X-ray photoelectron spectroscopy and attenuated total reflectance Fourier-transformed infrared spectroscopy investigation revealed the successful binding, while a gel permeation chromatography study showed that degradation did not occur under these conditions. Coupling of a rhodamine dye to the N-hydroxysuccinimide esters on the surface of a PFPA-functionalized scaffold via its amine linker showed a homogenous staining of the PPDO in laser confocal microscopy. The PFPA method is therefore applicable even to the surface functionalization of hydrolytically labile polymers, and it was demonstrated that PFPA chemistry may serve as a versatile tool for the (bio-)functionalization of PPDO scaffolds.
Spinning up large-scale coupled surface-subsurface numerical models can be a time and resource consuming task. If an uninformed initial condition is chosen, the spin-up can easily require 20 years of repeated simulations on high-performance computing machines. In this paper we compare the classical approach of starting from a fixed shallow depth to groundwater (here 3 m) with three more informed approaches for the definition of initial conditions in the spin up. In the first of these three approaches, we start from a known-steady state groundwater table, calculated with a 2-D groundwater model and the yearly net recharge, and combine it with an unsaturated zone that assumes hydrostatic conditions. In the second approach, we start from the same groundwater table combined with vertical profiles in the unsaturated zone with uniform vertical flow identical to the groundwater recharge. In the third approach we calculate a dynamic steady state from a simplified subsurface model combining a transient 2-D groundwater model with a limited number of 1-D transient unsaturated zone columns on top. Results for spinning-up a 3-D Parflow-CLM model using the different initial conditions show that large gains can be made by considering states in groundwater and the vadose zone that are consistent, i.e. where groundwater recharge and the vertical flux in the vadose zone agree. By this, the spin-up time was reduced from about 10 years to about 3 years of simulated time. In the light of seasonal fluctuations of net recharge, using the transient approach showed more stable results.
To date, little has been known about teachers’ success in bullying interventions. Thus, the present study analyzes how successfully teachers intervene in real bullying situations, based on an analysis of 1,996 reports by German students aged between 12 and 15 (49.2% female) from 24 schools. Predictors of success included intervention strategy (authoritarian-punitive, supportive-individual, supportive-cooperative intervention), bullying form (physical, verbal, relational, cyber), and the student’s bullying role (bully, victim, bystander) in the particular situation. Multilevel analyses showed that supportive-cooperative intervention strategies were the most successful in dealing with bullying in both the short and long term. In the long term, students evaluated teachers as being more successful in dealing with cyberbullying compared with physical bullying. Compared with students who observed bullying, students who perpetrated it were less likely to report that teachers’ interventions were successful in the short term. Implications for bullying intervention, preservice teacher-training, and future research are discussed.
This paper addresses semantic/pragmatic variability of tag questions in German and makes three main contributions. First, we document the prevalence and variety of question tags in German across three different types of conversational corpora. Second, by annotating question tags according to their syntactic and semantic context, discourse function, and pragmatic effect, we demonstrate the existing overlap and differences between the individual tag variants. Finally, we distinguish several groups of question tags by identifying the factors that influence the speakers’ choices of tags in the conversational context, such as clause type, function, speaker/hearer knowledge, as well as conversation type and medium. These factors provide the limits of variability by constraining certain question tags in German against occurring in specific contexts or with individual functions.
A simple, convenient, and inexpensive method to fabricate optical fiber based biosensors which utilize periodic hole arrays in gold films for signal transduction is reported. The process of hole array formation mainly relies on self-assembly of hydrogel microgels in combination with chemical gold film deposition and subsequent transfer of the perforated film onto an optical fiber tip. In the fabrication process solely chemical wet lab techniques are used, avoiding cost-intensive instrumentation or clean room facilities. The presented method for preparing fiber optic plasmonic sensors provides high throughput and is perfectly suited for commercialization using batch processing. The transfer of the perforated gold film onto an optical fiber tip does not affect the sensitivity of the biosensor ((420 +/- 83) nm/refractive index unit (RIU)), which is comparable to sensitivities of sensor platforms based on periodic hole arrays in gold films prepared by significantly more complex methods. Furthermore, real-time and in-line immunoassay studies with a specially designed 3D printed flow cell are presented exploiting the presented optical fiber based biosensors.
Quadruple-shape hydrogels
(2019)
The capability of directed movements by two subsequent shape changes could be implemented in shape-memory hydrogels by incorporation of two types of crystallizable side chains While in non-swollen polymer networks even more directed movements could be realized, the creation of multi-shape hydrogels is still a challenge. We hypothesize that a quadruple-shape effect in hydrogels can be realized, when a swelling capacity almost independent of temperature is generated, whereby directed movements could be enabled, which are not related to swelling. In this case, entropy elastic recovery could be realized by hydrophilic segments and the fixation of different macroscopic shapes by means of three semi-crystalline side chains generating temporary crosslinks. Monomethacrylated semi-crystalline oligomers were connected as side chains in a hydrophilic polymer network via radical copolymerization. Computer assisted modelling was utilized to design a demonstrator capable of complex shape shifts by creating a casting mold via 3D printing from polyvinyl alcohol. The demonstrator was obtained after copolymerization of polymer network forming components within the mold, which was subsequently dissolved in water. A thermally-induced quadruple-shape effect was realized after equilibrium swelling of the polymer network in water. Three directed movements were successfully obtained when the temperature was continuously increased from 5 degrees C to 90 degrees C with a recovery ratio of the original shape above 90%. Hence, a thermally-induced quadruple-shape effect as new record for hydrogels was realized. Here, the temperature range for the multi-shape effect was limited by water as swelling media (0 degrees C-100 degrees C), simultaneously distinctly separated thermal transitions were required, and the overall elasticity indispensable for successive deformations was reduced as result of partially chain segment orientation induced by swelling in water. Conclusively the challenges for penta- or hexa-shape gels are the design of systems enabling higher elastic deformability and covering a larger temperature range by switching to a different solvent.
This paper presents an experiment on the effect of retroactive price-reduction schemes on buyers’ repeated purchase decisions. Such schemes promise buyers a reduced price for all units that are bought in a certain time frame if the total quantity that is purchased passes a given threshold. This study finds a loyalty-enhancing effect of retroactive price-reduction schemes only if the buyers ex-ante expected that entering into the scheme would maximize their monetary gain, but later learn that they should leave the scheme. Furthermore, the effect crucially hinges on the framing of the price reduction.
Background Small-sided games have been suggested as a viable alternative to conventional endurance training to enhance endurance performance in youth soccer players. This has important implications for long-term athlete development because it suggests that players can increase aerobic endurance through activities that closely resemble their sport of choice. Data Sources The data sources utilised were Google Scholar, PubMed and Microsoft Academic. Study Eligibility Criteria Studies were eligible for inclusion if interventions were carried out in male soccer players (aged < 18years) and compared the effects of small-sided games and conventional endurance training on aerobic endurance performance. We defined small-sided games as modified [soccer] games played on reduced pitch areas, often using adapted rules and involving a smaller number of players than traditional games. We defined conventional endurance training as continuous running or extensive interval training consisting of work durations>3min. Study Appraisal and Synthesis Methods The inverse-variance random-effects model for meta-analyses was used because it allocates a proportionate weight to trials based on the size of their individual standard errors and facilitates analysis whilst accounting for heterogeneity across studies. Effect sizes were represented by the standardised mean difference and presented alongside 95% confidence intervals. Results Seven studies were included in this meta-analysis. Both modes of training were effective in increasing endurance performance. Within-mode effect sizes were both of moderate magnitude [small-sided games: 0.82 (95% confidence interval 0.05, 1.60), Z=2.07 (p=0.04); conventional endurance training: 0.89 (95% confidence interval 0.06, 1.72), Z=2.10 (p=0.04)]. There were only trivial differences [0.04 (95% confidence interval -0.36, 0.43), Z=0.18 (p=0.86)] between the effects on aerobic endurance performance of small-sided games and conventional endurance training. Subgroup analyses showed mostly trivial differences between the training methods across key programming variables such as set duration (>= or < 4 min) and recovery period between sets (>= or< 3min). Programmes that were longer than 8 weeks favoured small-sided games [effect size=0.45 (95% confidence interval -0.12, 1.02), Z=1.54 (p=0.12)], with the opposite being true for conventional endurance training [effect size=-0.33 (95% confidence interval -0.79, 0.14), Z=1.39 (p=0.16)]. Programmes with more than 4 sets per session favoured small-sided games [effect size=0.53 (95% confidence interval -0.52, 1.58), Z=0.98 (p=0.33)] with only a trivial difference between those with 4, or fewer, sets [effect size=-0.13 (95% confidence interval -0.52, 0.26), Z=0.65 (p=0.52)]. Conclusions Small-sided games are as effective as conventional endurance training for increasing aerobic endurance performance in male youth soccer players. This is important for practitioners as it means that small-sided games can allow both endurance and skills training to be carried out simultaneously, thus providing a more efficient training stimulus. Small-sided games offer the same benefits as conventional endurance training with two sessions per week, with4 sets of 4 min of activity, interspersed with recovery periods of 3min, recommended in this population.
The border shifts and population exchanges between Central and East European states agreed at the 1945 Potsdam Conference continue to reverberate in the culture and politics of those countries. Focusing on Poland, this article proposes the term “border trouble” to interpret the politicized split in memory that has run through Polish culture since the end of the Second World War. Border trouble is a form of cultural trauma that transcends binaries of perpetrator/victim and oppressor/oppressed; it is also a tool for analyzing the ways in which spatial imagination, memory, and identity interact in visual and literary narratives. A close analysis of four recent feature films demonstrates the emergence of a visual grammar of cosmopolitan memory and identity in relation to borderland spaces. Wojciech Smarzowski’s Róża (“Rose,” 2011) and Agnieszka Holland’s Pokot (“Spoor,” 2017) are both set in territories that were transferred from Germany to Poland in 1945. Wołyń (“Volhynia,” released internationally as “Hatred,” 2016) and W ciemności (“In Darkness,” 2011), also directed by Smarzowski and Holland respectively, are set in regions that were under Polish administration before the war but were transferred to Soviet Ukraine in 1945. All four productions break new ground in the memorialization of the post-war legacy in Poland. They deconstruct hitherto dominant discourses of simultaneity and ethnic homogeneity, engaging in Poland’s wars of symbols as a third voice: anti-nationalist, but also refusing to essentialize cosmopolitan identity. They show the evolution of border trouble in response to contemporary political and cultural developments.
This introduction to the special section on Poland’s wars of symbols analyzes the symbolic contestation that has characterized the country in recent years, studying a range of phenomena including nation, gender, memory, and religious symbolism within the overall framework of political conflict. In doing so, it offers a multidisciplinary view on political fractures that have resonated throughout Europe and the “West.” Overall, the four case studies in this section study ways in which national symbols, topoi, and narratives have been deployed as tools in drawing and redrawing boundaries within society, polarizing and mobilizing the political camps as well as contesting and resisting power. These studies enable us to situate recent political events in a historical perspective, mapping the rise of populism in Poland against the background of legacies specific to the East-Central European region.
Wildfires affect biodiversity at multiple levels. While vegetation is directly changed by fire events, animals are often indirectly affected through changes in habitat and food availability. Globally, fire frequency and the extent of fires are predicted to increase in the future. The impact of fire on the biodiversity of temperate wetlands has gained little attention so far. We compared species richness and abundance of plants and birds in burnt and unburnt areas in the Amur floodplain/Russian Far East in the year of fire and 1 year after. We also analysed vegetation recovery in relation to time since fire over a period of 18 years. Plant species richness was higher in burnt compared to unburnt plots in the year of the fire, but not in the year after. This suggests that fire has a positive short-term effect on plant diversity. Bird species richness and abundance were lower on burnt compared to unburnt plots in the year of the fire, but not in the year after. Over a period of 18 years, high fire frequency led to an increase in herb cover and a decrease in grass cover. We show that the effects on biodiversity are taxon- and species-specific. Fire management strategies in temperate wetlands should consider fire frequency as a key driving force of vegetation structure, with carry-over effects on higher trophic levels. Designing fire refuges, i.e., areas that do not burn annually, might locally be necessary to maintain high species richness.
Intermolecular charge-transfer states at the interface between electron donating (D) and accepting (A) materials are crucial for the operation of organic solar cells but can also be exploited for organic light-emitting diodes(1,2). Non-radiative charge-transfer state decay is dominant in state-of-the-art D-A-based organic solar cells and is responsible for large voltage losses and relatively low power-conversion efficiencies as well as electroluminescence external quantum yields in the 0.01-0.0001% range(3,4). In contrast, the electroluminescence external quantum yield reaches up to 16% in D-A-based organic light-emitting diodes(5-7). Here, we show that proper control of charge-transfer state properties allows simultaneous occurrence of a high photovoltaic and emission quantum yield within a single, visible-light-emitting D-A system. This leads to ultralow-emission turn-on voltages as well as significantly reduced voltage losses upon solar illumination. These results unify the description of the electro-optical properties of charge-transfer states in organic optoelectronic devices and foster the use of organic D-A blends in energy conversion applications involving visible and ultraviolet photons(8-11).
As schools are becoming more culturally diverse, it is crucial to understand how they can approach this diversity in ways that allow all students to feel included and do well. We focus on the manifestation of two related but distinct approaches to cultural diversity, namely equality and inclusion (i.e., promoting positive intergroup contact) and cultural pluralism (i.e., embracing students’ diverse cultural backgrounds as a resource), in the perceived classroom climate. Specifically, we test a model in which the link of cultural diversity climate at school and student outcomes (achievement, academic self-concept and general life satisfaction) is mediated by sense of school belonging, both at the individual and classroom level. Analyses are based on 1,971 students (61% of immigrant background; Mage = 11.53, SDage = 0.73, 52% male) in 88 culturally diverse classrooms in southwest Germany after their first year at secondary school. Individual- and classroom-level results suggest that both perceived equality and inclusion as well as cultural pluralism are positively associated with outcomes and this link is mediated by school belonging. There were no differences in the effects of (perceived) cultural diversity climate and school belonging between students of immigrant and nonimmigrant background, suggesting that dealing with cultural diversity in a constructive way is beneficial for all students attending multiethnic schools.
Global warming has profound effects on plant growth and fitness. Plants have evolved sophisticated epigenetic machinery to respond quickly to heat, and exhibit transgenerational memory of the heat-induced release of post-transcriptional gene silencing (PTGS). However, how thermomemory is transmitted to progeny and the physiological relevance are elusive. Here we show that heat-induced HEAT SHOCK TRANSCRIPTION FACTOR A2 (HSFA2) directly activates the H3K27me3 demethylase RELATIVE OF EARLY FLOWERING 6 (REF6), which in turn derepresses HSFA2. REF6 and HSFA2 establish a heritable feedback loop, and activate an E3 ubiquitin ligase, SUPPRESSOR OF GENE SILENCING 3 (SGS3)-INTERACTING PROTEIN 1 (SGIP1). SGIP1-mediated SGS3 degradation leads to inhibited biosynthesis of trans-acting siRNA (tasiRNA). The REF6-HSFA2 loop and reduced tasiRNA converge to release HEAT-INDUCED TAS1 TARGET 5 (HTT5), which drives early flowering but attenuates immunity. Thus, heat induces transmitted phenotypes via a coordinated epigenetic network involving histone demethylases, transcription factors, and tasiRNAs, ensuring reproductive success and transgenerational stress adaptation.
As a consequence of the rapid growing worldwide seismic data set, a huge variety of automatized data-processing methods have been developed. To perform automatized waveform-based seismological studies aiming for magnitudes or source process inversion, it is crucial to identify network stations with erroneous transfer functions, gain factors, or component orientations. We developed a new tool dedicated to automated station quality control of dense seismic networks and arrays. The python-based AutoStatsQ toolbox uses the pyrocko seismic data-processing environment. The toolbox automatically downloads data and metadata for selected teleseismic events and performs different tests. As a result, relative gain factors, sensor orientation corrections, and reliable frequency bands are computed for all stations in a chosen time period. Relative gain factors are calculated for all stations and events in a time domain based on maximum P-phase amplitudes. A Rayleigh-wave polarization analysis is used to identify deviating sensor orientations. The power spectra of all stations in a given frequency range are compared with synthetic ones, accessing Global Centroid Moment Tensor (CMT) solutions. Frequency ranges of coinciding synthetic and recorded power spectral densities (PSDs) may serve as guidelines for choosing band-pass filters for moment tensor (MT) inversion and help confirm the corner frequency of the instrument. The toolbox was applied to the permanent and temporary AlpArray networks as well as to the denser SWATH-D network, a total of over 750 stations. Stations with significantly deviating gain factors were identified, as well as stations with inverse polarity and misorientations of the horizontal components. The tool can be used to quickly access network quality and to omit or correct stations before MT inversion. Electronic Supplement: List of teleseismic events and tables of median, mean, and standard deviation of relative gain factors, and figures of relative gain factors of all event-station pairs, waveform example showing inverse polarity of horizontal components on ZS.D125, histograms of median, mean, and standard deviation of the correction angles, examples of synthetic and recorded frequency spectra of ZS.D046 and NI.VINO.
Shrinking glaciers in the Hindu Kush-Karakoram-Himalaya-Nyainqentanglha (HKKHN) region have formed several thousand moraine-dammed glacial lakes(1-3), some of these having grown rapidly in past decades(3,4). This growth may promote more frequent and potentially destructive glacial lake outburst floods (GLOFs)(5-7). Testing this hypothesis, however, is confounded by incomplete databases of the few reliable, though selective, case studies. Here we present a consistent Himalayan GLOF inventory derived automatically from all available Landsat imagery since the late 1980s. We more than double the known GLOF count and identify the southern Himalayas as a hotspot region, compared to the more rarely affected Hindu Kush-Karakoram ranges. Nevertheless, the average annual frequency of 1.3 GLOFs has no credible posterior trend despite reported increases in glacial lake areas in most of the HKKHN3,8, so that GLOF activity per unit lake area has decreased since the late 1980s. We conclude that learning more about the frequency and magnitude of outburst triggers, rather than focusing solely on rapidly growing glacial lakes, might improve the appraisal of GLOF hazards.