### Refine

#### Year of publication

- 2015 (9) (remove)

#### Document Type

- Preprint (9) (remove)

#### Keywords

- star product (2)
- Carleman formulas (1)
- Cauchy problem (1)
- Lagrangian system (1)
- Navier-Stokes equations (1)
- Newton method (1)
- Quasilinear equations (1)
- WKB method (1)
- asymptotic expansion (1)
- classical solution (1)

In this paper we study the convergence of continuous Newton method for solving nonlinear equations with holomorphic mappings in complex Banach spaces. Our contribution is based on a recent progress in the geometric theory of spirallike functions. We prove convergence theorems and illustrate them by numerical simulations.

We continue our study of invariant forms of the classical equations of mathematical physics,
such as the Maxwell equations or the Lamé system, on manifold with boundary. To this end we interpret them in terms of the de Rham complex at a certain step. On using the structure of the complex we get an insight to predict a degeneracy deeply encoded
in the equations. In the present paper we develop an invariant approach to the classical Navier-Stokes equations.

We consider a Cauchy problem for the heat equation in a cylinder X x (0,T) over a domain X in the n-dimensional space with data on a strip lying on the lateral surface. The strip is of the form
S x (0,T), where S is an open subset of the boundary of X. The problem is ill-posed. Under natural restrictions on the configuration of S we derive an explicit formula for solutions of this problem.

Let A be a nonlinear differential operator on an open set X in R^n and S a closed subset of X. Given a class F of functions in X, the set S is said to be removable for F relative to A if any weak solution of A (u) = 0 in the complement of S of class F satisfies this equation weakly in all of X. For the most extensively studied classes F we show conditions on S which guarantee that S is removable for F relative to A.

We define weak boundary values of solutions to those nonlinear differential equations which appear as Euler-Lagrange equations of variational problems. As a result we initiate the theory of Lagrangian boundary value problems in spaces of appropriate smoothness. We also analyse if the concept of mapping degree of current importance applies to the study of Lagrangian problems.

We describe a natural construction of deformation quantisation on a compact symplectic manifold with boundary. On the algebra of quantum observables a trace functional is defined which as usual annihilates the commutators. This gives rise to an index as the trace of the unity element. We formulate the index theorem as a conjecture and examine it by the classical harmonic oscillator.