### Refine

#### Document Type

- Preprint (13) (remove)

It is shown that an elliptic scattering operator A on a compact manifold with boundary with operator valued coefficients in the morphisms of a bundle of Banach spaces of class (HT ) and Pisier’s property (α) has maximal regularity (up to a spectral shift), provided that the spectrum of the principal symbol of A on the scattering cotangent bundle avoids the right half-plane. This is accomplished by representing the resolvent in terms of pseudodifferential operators with R-bounded symbols, yielding by an iteration argument the R-boundedness of λ(A − λ)−1 in R(λ)≥ τ for some τ ∈ IR. To this end, elements of a symbolic and operator calculus of pseudodifferential operators with R-bounded symbols are introduced. The significance of this method for proving maximal regularity results for partial differential operators is underscored by considering also a more elementary situation of anisotropic elliptic operators on Rd with operator valued coefficients.

We investigate general Shapiro-Lopatinsky elliptic boundary value problems on manifolds with polycylindrical ends. This is accomplished by compactifying such a manifold to a manifold with corners of in general higher codimension, and we then deal with boundary value problems for cusp differential operators. We introduce an adapted Boutet de Monvel’s calculus of pseudodifferential boundary value problems, and construct parametrices for elliptic cusp operators within this calculus. Fredholm solvability and elliptic regularity up to the boundary and up to infinity for boundary value problems on manifolds with polycylindrical ends follows.

Ellipticity of operators on manifolds with conical singularities or parabolicity on space-time cylinders are known to be linked to parameter-dependent operators (conormal symbols) on a corresponding base manifold. We introduce the conormal symbolic structure for the case of corner manifolds, where the base itself is a manifold with edges and boundary. The specific nature of parameter-dependence requires a systematic approach in terms of meromorphic functions with values in edge-boundary value problems. We develop here a corresponding calculus, and we construct inverses of elliptic elements.

We prove the existence of sectors of minimal growth for general closed extensions of elliptic cone operators under natural ellipticity conditions. This is achieved by the construction of a suitable parametrix and reduction to the boundary. Special attention is devoted to the clarification of the analytic structure of the resolvent.

We introduce the Volterra calculus of pseudodifferential operators with an anisotropic analytic parameter based on "twisted" operator-valued Volterra symbols. We establish the properties of the symbolic and operational calculi, and we give and make use of explicit oscillatory integral formulas on the symbolic side. In particular, we investigate the kernel cut-off operator via direct oscillatory integral techniques purely on symbolic level. We discuss the notion of parabolic for the calculus of Volterra operators, and construct Volterra parametrices for parabolic operators within the calculus.

We construct algebras of Volterra pseudodifferential operators that contain, in particular, the inverses of the most natural classical systems of parabolic boundary value problems of general form. Parabolicity is determined by the invertibility of the principal symbols, and as a result is equivalent to the invertibility of the operators within the calculus. Existence, uniqueness, regularity, and asymptotics of solutions as t → ∞ are consquences of the mapping properties of the operators in exponentially weighted Sobolev spaces and subspaces with asymptotics. An important aspect of this work is that the microlocal and global kernel structure of the inverse operator (solution operator) of a parabolic boundary value problem for large times is clarified. Moreover, our approach naturally yields qualitative pertubation results for the solvability theory of parabolic boundary value problems. To achieve these results, we assign t = ∞ the meaning of a conical point and treat the operators as totally characteristic pseudodifferential boundary value problems.

We consider general parabolic systems of equations on the infinite time interval in case of the underlying spatial configuration is a closed manifold. The solvability of equations is studied both with respect to time and spatial variables in exponentially weighted anisotropic Sobolev spaces, and existence and maximal regularity statements for parabolic equations are proved. Moreover, we analyze the long-time behaiour of solutions in terms of complete asymptotic expansions. These results are deduced from a pseudodifferential calculus that we construct explicitly. This algebra of operators is specifically designed to contain both the classical systems of parabolic equations of general form and their inverses, parabolicity being reflected purely on symbolic level. To this end, we assign t = ∞ the meaning of an anisotropic conical point, and prove that this interprtation is consistent with the natural setting in the analysis of parabolic PDE. Hence, major parts of this work consist of the construction of an appropriate anisotropiccone calculus of so-called Volterra operators. In particular, which is the most important aspect, we obtain the complete characterization of the microlocal and the global kernel structure of the inverse of parabolicsystems in an infinite space-time cylinder. Moreover, we obtain perturbation results for parabolic equations from the investigation of the ideal structure of the calculus.

Content: Introduction 1 Anisotropic operators in a cylinder with a conical base 1.1 Manifolds with conical singularities and opertors of Fuchs type 1.2 Typical operators and symbol structures 2 Weighted wedge Sobolev spaces and edge asymptotics 2.1 Discrete edge asymptotics 2.2 Continuos edge asymptotics with discrete limit at infinity 2.3 Calculus with operator valued symbols 3 Corner asymptotics at infinity 3.1 The structure of singular functions 3.2 Operators with trace and potential conditions 3.3 Asymptotics and (anisotropic) elliptic regularity