### Refine

#### Year of publication

#### Document Type

- Article (264)
- Monograph/Edited Volume (3)
- Other (2)
- Conference Proceeding (1)
- Postprint (1)
- Review (1)

#### Keywords

- Conformational analysis (9)
- Theoretical calculations (8)
- NMR (5)
- NMR spectroscopy (5)
- Quantum chemical calculations (5)
- conformational analysis (5)
- Anisotropy effect (4)
- Dynamic NMR (4)
- ICSS (4)
- Ring current effect (4)
- TSNMRS (4)
- quantum chemical calculations (4)
- Aromaticity (3)
- Conformational equilibrium (3)
- NBO analysis (3)
- dynamic NMR (3)
- (Anti)aromaticity (2)
- Anisotropic effect (2)
- Barrier to ring inversion (2)
- Chelatoaromaticity (2)
- DFT calculations (2)
- Density functional calculations (2)
- Dynamic NMR spectroscopy (2)
- H-1 NMR (2)
- Push-pull character (2)
- Push-pull effect (2)
- Stereochemistry (2)
- Steric effect (2)
- Taft equation (2)
- Through-space NMR shieldings (TSNMRS) (2)
- anisotropic effects (2)
- aromaticity (2)
- (1)H NMR (1)
- (13)C NMR (1)
- 1,1-dimethyl-1,2,3,4-tetrahydrosiline (1)
- 1,2,4-Dithiazole (1)
- 1,2-Dithiole (1)
- 1,3-Azasilinanes (1)
- 1,3-Dimethyl-3-phenyl-1,3-azasilinane (1)
- 1,3-Oxasilinanes (1)
- 1,4,2-Oxazasilinanes (1)
- 2 (1)
- 2,2-Disubstituted adamantane derivatives (1)
- 2-Alkylidene-4-oxothiazolidine (1)
- 2-Substituted adamantane derivatives (1)
- 3,4-Dihydroisoquinoline (1)
- 3,4-dihydro-2H-pyran (1)
- 3,4-dihydro-2H-thiopyran (1)
- 3-Silatetrahydropyrans (1)
- 3-silathianes (1)
- 4,4-dimethyl-3,4-dihydro-2H-1,4-thiasiline (1)
- 4-Oxothiazolidine (1)
- 4-Substituted cyclohexanones (1)
- 4-silapiperidines (1)
- 4-silathianes (1)
- 6-disilamorpholines (1)
- 9-Arylfluorenes (1)
- ALTONA equation (1)
- ATR-FTIR (1)
- Ab initio MO computations (1)
- Additivity of conformational energies (1)
- Aminonaphthol (1)
- Aminonaphthols (1)
- Anserine (1)
- Anticancer (1)
- Antileishmanial (1)
- Antiplasmodial (1)
- Aromatic or quinonoid (1)
- Assignment of stereochemistry (1)
- Asteraceae (1)
- B,N heterocycles (1)
- B3LYP/6-31+G(d,p) calculations (1)
- Benzazepine (1)
- Benzenoid structure (1)
- Binding pocket position (1)
- C-13 (1)
- C-13 NMR (1)
- C-13 NMR spectroscopy (1)
- C-13 chemical shift difference Delta delta(C C) (1)
- CH center dot center dot center dot O hydrogen bonds (1)
- Carbohydrates (1)
- Carvotacetones (1)
- Chiral dopants (1)
- Condensed thiazolidines (1)
- Conformational equilibria (1)
- Copper Metal Complexes (1)
- Cyclohexyl esters (1)
- DFT calculation (1)
- DFT theoretical calculations (1)
- Dehydro[n]annulenes (1)
- Diastereomers assignment (1)
- Diastereoselectivity (1)
- Dual Scale Factors (1)
- Dual scale factors (1)
- Electrostatic effects (1)
- F-19 (1)
- GIAO (1)
- GIAO calculations (1)
- Gas-phase electron diffraction (1)
- Glycol podands (1)
- H-1 (1)
- H-1 NMR spectroscopy (1)
- Hammett-Brown plots (1)
- Hemiporphyrazines (1)
- Heterocycles (1)
- IR and Raman spectra (1)
- Iso-chemical-shielding surfaces (ICSS) (1)
- Isothiocyanic acid (1)
- Low temperature NMR spectroscopy (1)
- Matrix IR spectrum (1)
- Modified Mannich reaction (1)
- Molecular dynamics (1)
- N-acetyl glucosamine derivatives (1)
- N-unsubstituted (primary)S-thiocarbamates (1)
- N-unsubstituted(primary)O-thiocarbamates (1)
- NBO and STERIC analyses (1)
- NBO/NCS analysis (1)
- NICS (1)
- Naphthoxazinoquinazolines (1)
- Naphthoxazinoquinazolinones (1)
- Occupation quotient pi*/pi (1)
- Polar effect (1)
- Polar substituent constant (1)
- Porphyrins (1)
- Push-pull alkynes (1)
- Push-pull allenes (1)
- Quantum Chemical Calculations (1)
- Quasi-aromaticity (1)
- Quinonoid structure (1)
- Quotient method (1)
- Rearrangement to trithiaazapentalene (1)
- Residual dipolar couplings (1)
- Ring-current effect (1)
- SQM FF (1)
- SQM-FF (1)
- Salicylic acid (1)
- Silacyclohexanes (1)
- Silaheterocyclohexanes (1)
- Silica sulfuric acid (1)
- Simulation of H-1 NMR spectra (1)
- Solid acid (1)
- Solvent effects (1)
- Solvent-free (1)
- Spatial NICS (1)
- Sphaeranthus bullatus (1)
- Steric effects (1)
- Steric hindrance (1)
- Steric substituent constant (1)
- Substituent chemical shifts (1)
- Substituent effects (1)
- Sulfoxide (1)
- Supramolecular compounds (1)
- Tautomerism (1)
- Tetraoxo[8]circulenes (1)
- Thienopyridine (1)
- Through-space NMR shielding (TSNMRS) (1)
- Trithiapentalene (1)
- Twisted double bonds (1)
- Vinylogous N-acyliminium ion (1)
- X-ray analysis (1)
- Y-aromaticity (1)
- ab initio calculations (1)
- barrier to ring inversion (1)
- benzenoid structures (1)
- cis,cis-Tricyclo[5.3.0.0(2,6)]dec-3-enes (1)
- computational chemistry (1)
- conformational equilibrium (1)
- density functional calculations (1)
- dielectric spectroscopy (1)
- endo-Mode cyclization (1)
- ephedrine/pseudoephedrine (1)
- low temperature NMR spectroscopy (1)
- low-temperature NMR spectroscopy (1)
- molecular structure (1)
- nucleus-independent chemical shift (1)
- onformational analysis (1)
- para-Nitro-pyridine N-oxides (1)
- pi interactions (1)
- pi-Electron delocalization (1)
- quinoid structures (1)
- restricted N-S rotation (1)
- silapiperidines (1)
- sulfimides (1)
- sulfur heterocycles (1)

#### Institute

- Institut für Chemie (272) (remove)

The spatial magnetic properties (Through Space NMR Shieldings - TSNMRS) of a number of Y-shaped structures possessing 4n+2 pi-electrons (i.a. the trimethylenemethane ions TMM2+, TMM2-, the guanidinium cation, substituted and hetero analogues) have been computed, visualized as Isochemical Shielding Surfaces (ICSS) of various size and direction, were examined subject to present Y-aromaticity and the results compared with energetic and geometric criteria obtained already. (C) 2016 Elsevier Ltd. All rights reserved.

Through the reactions of 1- or 2-naphthol and 4,5-dihydro-3H-benz[c]azepine or 6,7-dihydrothieno[3,2-c]pyridine, new aminonaphthol derivatives were prepared. The syntheses were extended by using N-containing naphthol analogues such as 5-hydroxyisoquinoline and 6-hydroxyquinoline. The ring closures of the novel bifunctional compounds were also achieved, resulting in new naphth[2,1-e][1,3]oxazines, naphth[1,2-e][1,3]oxazines, isoquinolino[5,6-e][1,3]oxazines and quinolino[5,6-e][1,3]oxazines. H-1 NMR spectra of the target heterocycles 16, 20 and 21 were sufficiently resolved to indentify the present stereochemistry; therefore, beside computed structures, spatial experimental (dipolar coupling-NOE) and computed (ring current effect of the naphthyl moiety-TSNMRS) NMR studies were employed. The studied heterocycles exist exclusively as S(14b),R(N), R(14b),S(N), and S(16b)S(N) isomers, respectively. The flexible moieties of the studied compounds prefer. (C) 2016 Elsevier Ltd. All rights reserved.

Information about the strength of donor-acceptor interactions in push-pull alkenes is valuable, as this so-called "push-pull effect' influences their chemical reactivity and dynamic behaviour. In this paper, we discuss the applicability of NMR spectral data and barriers to rotation around the CQC double bond to quantify the push-pull effect in biologically important 2-alkylidene-4-oxothiazolidines. While olefinic proton chemical shifts and differences in C-13 NMR chemical shifts of the two carbons constituting the CQC double bond fail to give the correct trend in the electron withdrawing ability of the substituents attached to the exocyclic carbon of the double bond, barriers to rotation prove to be a reliable quantity in providing information about the extent of donor-acceptor interactions in the push-pull systems studied. In particular all relevant kinetic data, that is the Arrhenius parameters ( apparent activation energy Ea and frequency factor A) and activation parameters ( Delta S-double dagger, Delta H-double dagger and Delta G(double dagger)), were determined from the data of the experimentally studied configurational isomerization of ( E)-9a. These results were compared to previously published related data for other two compounds, ( Z)-1b and ( 2E, 5Z)-7, showing that experimentally determined Delta G(double dagger) values are a good indicator of the strength of push-pull character. Theoretical calculations of the rotational barriers of eight selected derivatives excellently correlate with the calculated CQC bond lengths and corroborate the applicability of Delta G(double dagger) for estimation of the strength of the push-pull effect in these and related systems.

In this study, the stable conformers of neutral anserine were searched by molecular dynamics simulations and energy minimization calculations using the MM2 force field. Thermochemical calculations at B3LYP/6-31G(d) level of theory followed these preliminary calculations. The results confirmed that neutral anserine has quite a flexible structure and many stable gauche and trans conformers at room temperature. Nevertheless, two are considerably more favourable in energy than the others and expected to dominate the gas-phase and matrix IR spectra of the molecule. The corresponding structural and vibrational spectral data for these two conformers of neutral anserine, whose relative stabilities were also examined by high-accuracy energy calculations carried out using G3MP2B3 method, and for the most stable conformer of anserine in zwitterion form were calculated at B3LYP/6-311++G(d,p) level of theory. The calculated harmonic force constants were refined using the Scaled Quantum Mechanical Force Field (SQM-FF) method and then used to produce the refined wavenumbers, potential energy distributions (PEDs) and IR and Raman intensities. These refined data together with the scaled harmonic wavenumbers obtained using another method, Dual Scale factors (DS), enabled us to correctly analyse the observed IR and Raman spectra of anserine and revealed the effects of conformation and zwitterionic tautomerism on its structural and vibrational spectral data. (C) 2016 Elsevier B.V. All rights reserved.

Information about the strength of donor–acceptor interactions in push–pull alkenes is valuable, as this so-called “push–pull effect” influences their chemical reactivity and dynamic behaviour. In this paper, we discuss the applicability of NMR spectral data and barriers to rotation around the C[double bond, length as m-dash]C double bond to quantify the push–pull effect in biologically important 2-alkylidene-4-oxothiazolidines. While olefinic proton chemical shifts and differences in 13C NMR chemical shifts of the two carbons constituting the C[double bond, length as m-dash]C double bond fail to give the correct trend in the electron withdrawing ability of the substituents attached to the exocyclic carbon of the double bond, barriers to rotation prove to be a reliable quantity in providing information about the extent of donor–acceptor interactions in the push–pull systems studied. In particular all relevant kinetic data, that is the Arrhenius parameters (apparent activation energy Ea and frequency factor A) and activation parameters (ΔS‡, ΔH‡ and ΔG‡), were determined from the data of the experimentally studied configurational isomerization of (E)-9a. These results were compared to previously published related data for other two compounds, (Z)-1b and (2E,5Z)-7, showing that experimentally determined ΔG‡ values are a good indicator of the strength of push–pull character. Theoretical calculations of the rotational barriers of eight selected derivatives excellently correlate with the calculated C[double bond, length as m-dash]C bond lengths and corroborate the applicability of ΔG‡ for estimation of the strength of the push–pull effect in these and related systems.

Chiral dopants were obtained by acylation of enantiomerically pure ephedrine and pseudoephedrine with promesogenic carbonyl reagents. The products have been investigated with respect to their chiral transfer ability on nematic host matrices characterized by extreme differences of the dielectric anisotropy. It has been found that the medium dependence of the helicity induction nearly disappears at reduced temperatures. Based on variable temperature H-1 NMR studies on monoacylated homologues, the estimated coalescence temperatures and free activation enthalpies for the hindered rotation around C-N bonds could be correlated with the helical twisting power. Measurements by dielectric spectroscopy reveal the correlation between the molar mass of substituents linked to the chiral building block and the dynamic glass transition of corresponding chiral dopants. Furthermore, the effect of intramolecular and intermolecular hydrogen bonds has been studied by ATR-FTIR spectroscopy.

Are para-nitro-pyridine N-oxides quinonoid or benzenoid? An answer given by spatial NICS (TSNMRS)
(2015)

The spatial magnetic properties (Through-Space NMR Shieldings-TSNMRS) of a number of substituted para-nitro-pyridine N-oxides have been computed, visualized as Iso-Chemical-Shielding-Surfaces (ICSS) of various size and direction, and were examined subject to the present quinonoid or benzenoid pi-relectron distribution of the six-membered ring. (C) 2015 Elsevier Ltd. All rights reserved.

The complete H-1 and C-13 NMR chemical shifts assignment for various 2-substituted and 2,2-disubstituted adamantane derivatives 1-38 in CDCl3 solution was realized on the basis of NMR experiments combined with chemical structure information and DFT-GIAO (B3LYP/6-31+G(d,p)-GIAO) calculations of chemical shifts in solution. Substituent-induced C-13 NMR chemical shifts (SCS) are discussed. C-H-ax center dot center dot center dot Y-ax contacts are a textbook prototype of steric hindrance in organic chemistry. The nature of these contacts will be further investigated in this work on basis of new adamantane derivatives, which are substituted at C-2 to provide models for 1,4-C-H-ax center dot center dot center dot Y-ax and 1,5-C-H-ax center dot center dot center dot Y-ax contacts. The B3LYP/6-31+G(d,p) calculations predicted the presence of NBO hyperconjugative attractive interactions between C-H-ax and Y-ax groups along C-H-ax center dot center dot center dot Y-ax contacts. The H-1 NMR signal separation, Delta delta(gamma-CH2), reflects the strength of the H-bonded C-H-ax center dot center dot center dot Y-ax contact. (C) 2015 Elsevier Ltd. All rights reserved.

The spatial magnetic properties (through Space NAIR shieldings, TSNMRSs) of cyclopropane; of the heteroanalogous oxirane, thiirane, and aziridine; and of various substituted dis-, and tris-cyclic analogues have been computed by the GIAO perturbation method employing the nucleus independent chemical shift (NICS) concept and visualized as iso-chemical-shielding surfaces (ICSSs) of various size and direction. The TSNMRS values, thus obtained, can be employed to visualize the anisotropy (ring current) effect of I the cyclopropane ring moiety. This approach has been employed to qualify and quantify substituent influences and contributions of appropriate ring heteroatoms O, NH, and S on the anisotropy (ring current) effect of three-mernbered ring moieties, and to assign the stereochemistry of mono-, bis-, and tris cyclic structures containing cyclopropane as a structural element. Characteristic examples are included.

The molecular structure and conformational behavior of 3-methyl-3-phenyl-3-silatetrahydropyran 1 was studied by gas-phase electron diffraction (GED-MS), low temperature C-13 NMR spectroscopy (LT NMR) and theoretical calculations. The 1-Ph-eq and 1-Ph-ax conformers were located on the potential energy surface. Rotation about the Si-C-ph bond revealed the phenyl ring orthogonal to the averaged plane of the silatetrahydropyran ring for 1-Ph-eq and a twisted orientation for 1-Ph-ax. Theoretical calculations and GED analysis indicate the predominance of 1-Ph-ax in the gas phase with the ratio of conformers (GED) 1-Ph-eq:1-Ph-ax=38:62 (Delta G degrees(307)=-0.29 kcal/mol). In solution, LT NMR spectroscopy gives almost the opposite ratio Ph-eq:1-Ph-ax=68:32 (Delta G degrees(103)=0.16 kcal/mol). Simulation of solvent effects using the PCM continuum model or by calculation of the solvent-solute complexes allowed us to rationalize the experimentally observed opposite conformational predominance of the conformers of compound 1 in the gas phase and in solution. (C) 2015 Elsevier Ltd. All rights reserved.

Characterization and quantification of quasi-aromaticity by spatial magnetic properties (TSNMRS)
(2015)

The spatial magnetic properties (Through Space NMR Shieldings-TSNMRS) of various types of structures with suggested quasi-aromaticity (a summaring topic: in detail push pull, captodative, chelate, supramolecular aromaticity, etc.) have been computed, are visualized as Isochemical Shielding Surfaces (ICSS) of various size/direction and examined subject to identify and quantify present (partial) aromaticity. While the TSNMRS approach proves really helpful [even in cases of (4n+2) pi-electron cyclic moieties formed via non-covalent polar interactions] quasi-aromaticity suggested for enol forms of 1,3-dicarbonyl compounds via resonance-assisted intramolecular and intermolecular hydrogen bonding cannot be confirmed. (C) 2015 Elsevier Ltd. All rights reserved.

Molecular structure and conformational behavior of 3-isopropoxy-3-methyl-3-oxasilinane is studied by low temperature C-13 NMR spectroscopy and theoretical calculations (DFT, MP2). Two conformers, 1-ROax and 1-ROeq, were found experimentally and located on the potential energy surface. LT C-13 NMR spectroscopy gives almost equal population of the two conformers at 98 K with Delta G(98K)degrees=0.02 kcal/mol in favor of 1-ROax and Delta G(98K)(#)=4.5 kcal/mol. The corresponding DFT calculated values (Delta G(98K)degrees=0.03 kcal/mol, Delta G(98K)(#)=5.1 kcal/mol) are in excellent agreement with the experiment. Detailed DFT and MP2 calculations of the solvent effect on the conformational equilibrium were performed and highlighted the leveling out of the two conformers when transferred from gas to solution. (C) 2015 Published by Elsevier Ltd.

3-Methyl-3-silatetrahydropyran 1 was synthesized and its molecular structure and conformational behavior was studied by gas-phase electron diffraction (GED), FTIR, low temperature H-1 and C-13 NMR spectroscopy, and by theoretical calculations (DFT, MP2). Two conformers; 1-ax and 1-eq; were located on the potential energy Surface. In the gas phase; a slight predominance of the axial conformer was determined, with the ratio 1-ax:1-eq = 54(9):46(9) (from GED) or 53:47 or 61;39 (from IR). In solution, LT NMR spectroscopy at 103 K gives the ratio 1-ax:1-eq = 35:65 (-Delta G(103)degrees = 0.13 kcal/mol). Simulation of solvent effects using the PCM continuum model or by calculation of the corresponding solvent-solute complexes allowed us to rationalize the experimentally observed opposite conformational predominance of the conformers of 3-methyl-3-silatettahydropyran in the gas phase and in solution. Comparative analysis of the effect of heteroatom in 1-hetero-3-methyl-3-silacyclohexanes on the structure, stereoelectronic interactions, and relative energies of the conformers is done.

As a part of searching for fully aromatic chelate compounds, copper complexes of malondialdehyde as well as its sulfur and selenium derivatives were investigated using the DFT quantum chemical methods. Chelate complexes of both Cu(I) and Cu(II) ions wereconsidered. Aromaticity of the metal complexes studied were analyzed using NICS(0), NICS(1), PDI, I-ring, MCI, ICMCI and I-B aromaticity indices, and by TSNMRS visualizations of the spatial magnetic properties. It seems that partial aromaticityof studied chelates increases when oxygen atoms in malondialdehyde are replaced by sulfur and selenium.

The anisotropy effect of functional groups (respectively the ring-current effect of aryl moieties) in H-1 NMR spectra has been computed as spatial NICS (through-space NMR chemical shieldings) and visualized by iso-chemical-shielding surfaces of various size and low(high) field direction. Hereby, the anisotropy/ring-current effect, which proves to be the molecular response property of spatial NICS, can be quantified and can be readily employed for assignment purposes in proton NMR spectroscopy-characteristic examples of stereochemistry and position assignments (the latter in supramolecular structures) will be given. In addition, anisotropy/ring-current effects in H-1 NMR spectra can be quantitatively separated from the second dominant structural effect in proton NMR spectra, the steric compression effect, pointing into the reverse direction, and the ring-current effect, by far the strongest anisotropy effect, can be impressively employed to visualize and quantify (anti) aromaticity and to clear up standing physical-organic phenomena as are pseudo-, spherical, captodative, homo-and chelatoaromaticity, to characterize the pi-electronic structure of, for example, fulvenes, fulvalenes, annulenes or fullerenes and to differentiate aromatic and quinonoid structures.

Conformational behavior of the first cyclic organosilicon vinylsulfide, 4,4-dimethyl-3,4-dihydro-2H-1,4-thiasiline as well as its monoheterocyclic analogs, 3,4-dihydro-2H-pyran, 3,4-dihydro-2H-thiopyran, and 1,1-dimethyl-1,2,3,4-tetrahydrosiline is studied in comparison with the carbocyclic analog, cyclohexene, using the methods of low-temperature NMR spectroscopy and theoretical calculations at the DFT and MP2 levels of theory. The barrier to the ring inversion with respect to that in cycloxene is increased in 3,4-dihydro-2H-pyran and 1,1-dimethyl-1,2,3,4-tetrahydrosiline, but, in contrast to the suggestions made in the literature, is decreased in 3,4-dihydro-2H-thiopyran. In 4,4-dimethyl-3,4-dihydro-2H-1,4-thiasiline the barrier is intermediate between those in the corresponding monoheterocycles, 1,1-dimethyl-1,2,3,4-tetrahydrosiline and 3,4-dihydro-2H-thiopyran. The observed variations are rationalized from the viewpoint of the interaction of the pi-electrons of the C=C double bond with the orbitals of heteroatoms in the ring. The structure of the transition state for the ring inversion is discussed.

Restricted rotation about the N-S partial double bonds in a bis-N-triflyl substituted 3,8-diazabicyclo[3.2.1]octane derivative 1 has been frozen at low temperature (Delta G* = 11.6 kcal mol(-1)), and the existence of all four rotamers about the two N-S bonds, 3-in, 8-in, 3-in, 8-out, 3-out, 8-in, and 3-out, 8-out, respectively, proved experimentally by NMR spectroscopy and theoretically by DFT and MP2 calculations. Copyright (C) 2014 John Wiley & Sons, Ltd.

Structures, C-13 chemical shifts, and the occupation quotients of anti-bonding pi* and bonding pi orbitals of the C C triple bond along a series of push-pull alkynes (p)X-C6H4 C(O)-C C-NH-C6H4-Y(P) (X,Y= H, Me, OMe, NMe2, NO2, COMe, COOMe, F, Cl, Br) were computed at the DFT level (B3LYP/6-311G**) of theory. Both the stereochemistry (cis/trans-isomers) by steric twist and the push-pull character by both C-13 chemical shift differences (Delta delta(C C)) and the occupation quotient (pi(C C)/pi(C C)) were studied; the latter two parameters can be readily employed to precisely quantify the push-pull effect in alkynes. (C) 2014 Elsevier B.V. All rights reserved.

The spatial magnetic properties (Through Space NMR Shieldings-TSNMRS) of a variety of porphyrins, hemiporphyrazines and tetraoxo[8]circulenes have been computed, visualized as Iso-chemical Shielding Surfaces (ICSS) of various size and direction, and were examined subject to the interplay of present (para)-diatropic ring currents [(anti)aromaticity] and influences on the latter property originating from the macrocyclic ring conformation, further annelation and partial to complete hydrogenation of aromatic ring moieties. Caution seems to be indicated when concluding from a single NICS parameter to present (para)diatropic ring currents [(anti)aromaticity]. (C) 2014 Elsevier Ltd. All rights reserved.