Refine
Year of publication
Document Type
- Article (27759)
- Doctoral Thesis (5559)
- Monograph/edited volume (5197)
- Postprint (2802)
- Review (1932)
- Preprint (566)
- Conference Proceeding (421)
- Other (414)
- Part of Periodical (376)
- Part of a Book (340)
- Master's Thesis (192)
- Working Paper (180)
- Habilitation (70)
- Report (25)
- Bachelor Thesis (23)
- Journal/Publication series (16)
- Lecture (10)
- Course Material (9)
- Moving Images (4)
- Contribution to a Periodical (1)
- Sound (1)
- Study Thesis (1)
Language
- German (22872)
- English (22079)
- Spanish (311)
- French (295)
- Russian (103)
- Italian (91)
- Multiple Languages (65)
- Polish (21)
- Portuguese (19)
- Czech (15)
Keywords
- Germany (140)
- Deutschland (118)
- climate change (95)
- Patholinguistik (70)
- patholinguistics (70)
- Sprachtherapie (69)
- European Union (67)
- Europäische Union (64)
- morphology (59)
- Außenpolitik (57)
Institute
- Institut für Physik und Astronomie (4260)
- Institut für Biochemie und Biologie (4196)
- Institut für Chemie (2767)
- Institut für Geowissenschaften (2688)
- Wirtschaftswissenschaften (2448)
- Historisches Institut (2015)
- Institut für Romanistik (1900)
- Institut für Mathematik (1867)
- Department Psychologie (1842)
- Sozialwissenschaften (1759)
In this paper the use of two different scaffolds in a seminar on the topic of heterocycles is discussed. The students first used both scaffolds (stepped supporting tools and a task navigator) on two tasks and could then choose for one other task the scaffold that suited them more. The scaffolds were evaluated in a mixedmethods study by the use of questionnaires and the conducting of a focus group interview. Both scaffolds were assessed as being helpful. However, students who thought they didn’t need different sorts of tips, as provided by the task navigator, chose the stepped supporting tools. All students reflected on their use of the scaffolds; their choices for one of both are therefore well-founded. As the reasons for choosing the scaffold are very individual, in future seminars both types of scaffolds will be provided.
In this paper the use of two different scaffolds in a seminar on the topic of heterocycles is discussed. The students first used both scaffolds (stepped supporting tools and a task navigator) on two tasks and could then choose for one other task the scaffold that suited them more. The scaffolds were evaluated in a mixedmethods study by the use of questionnaires and the conducting of a focus group interview. Both scaffolds were assessed as being helpful. However, students who thought they didn’t need different sorts of tips, as provided by the task navigator, chose the stepped supporting tools. All students reflected on their use of the scaffolds; their choices for one of both are therefore well-founded. As the reasons for choosing the scaffold are very individual, in future seminars both types of scaffolds will be provided.
Role of GDF15 in active lifestyle induced metabolic adaptations and acute exercise response in mice
(2019)
Physical activity is an important contributor to muscle adaptation and metabolic health. Growth differentiation factor 15 (GDF15) is established as cellular and nutritional stress-induced cytokine but its physiological role in response to active lifestyle or acute exercise is unknown. Here, we investigated the metabolic phenotype and circulating GDF15 levels in lean and obese male C57BI/6J mice with long-term voluntary wheel running (VWR) intervention. Additionally, treadmill running capacity and exercise-induced muscle gene expression was examined in GDF15-ablated mice. Active lifestyle mimic via VWR improved treadmill running performance and, in obese mice, also metabolic phenotype. The post-exercise induction of skeletal muscle transcriptional stress markers was reduced by VWR. Skeletal muscle GDF15 gene expression was very low and only transiently increased post-exercise in sedentary but not in active mice. Plasma GDF15 levels were only marginally affected by chronic or acute exercise. In obese mice, VWR reduced GDF15 gene expression in different tissues but did not reverse elevated plasma GDF15. Genetic ablation of GDF15 had no effect on exercise performance but augmented the post exercise expression of transcriptional exercise stress markers (Atf3, Atf6, and Xbp1s) in skeletal muscle. We conclude that skeletal muscle does not contribute to circulating GDF15 in mice, but muscle GDF15 might play a protective role in the exercise stress response.
Aim: Assessment of the feasibility and reliability of immune-inflammatory biomarker measurements. Methods: The following biomarkers were assessed in 207 predominantly healthy participants at baseline and after 4 months: MMF, TGF-beta, suPAR and clusterin. Results: Intraclass correlation coefficients (95% CIs) ranged from good for TGF-beta (0.75 [95% CI: 0.33-0.90]) to excellent for MMF (0.81 [95% CI: 0.64-0.90]), clusterin (0.83 [95% CI: 0.78-0.87]) and suPAR (0.91 [95% CI: 0.88-0.93]). Measurement of TGF-beta was challenged by the large number of values below the detection limit. Conclusion: Single measurements of suPAR, clusterin and MMF could serve as feasible and reliable biomarkers of immune-inflammatory pathways in biomedical research.
This paper introduces a novel measure to assess similarity between event hydrographs. It is based on cross recurrence plots (CRP) and recurrence quantification analysis (RQA), which have recently gained attention in a range of disciplines when dealing with complex systems. The method attempts to quantify the event runoff dynamics and is based on the time delay embedded phase space representation of discharge hydrographs. A phase space trajectory is reconstructed from the event hydrograph, and pairs of hydrographs are compared to each other based on the distance of their phase space trajectories. Time delay embedding allows considering the multidimensional relationships between different points in time within the event. Hence, the temporal succession of discharge values is taken into account, such as the impact of the initial conditions on the runoff event. We provide an introduction to cross recurrence plots and discuss their parameterization. An application example based on flood time series demonstrates how the method can be used to measure the similarity or dissimilarity of events, and how it can be used to detect events with rare runoff dynamics. It is argued that this methods provides a more comprehensive approach to quantify hydrograph similarity compared to conventional hydrological signatures.
Large earthquakes initiate chains of surface processes that last much longer than the brief moments of strong shaking. Most moderate‐ and large‐magnitude earthquakes trigger landslides, ranging from small failures in the soil cover to massive, devastating rock avalanches. Some landslides dam rivers and impound lakes, which can collapse days to centuries later, and flood mountain valleys for hundreds of kilometers downstream. Landslide deposits on slopes can remobilize during heavy rainfall and evolve into debris flows. Cracks and fractures can form and widen on mountain crests and flanks, promoting increased frequency of landslides that lasts for decades. More gradual impacts involve the flushing of excess debris downstream by rivers, which can generate bank erosion and floodplain accretion as well as channel avulsions that affect flooding frequency, settlements, ecosystems, and infrastructure. Ultimately, earthquake sequences and their geomorphic consequences alter mountain landscapes over both human and geologic time scales. Two recent events have attracted intense research into earthquake‐induced landslides and their consequences: the magnitude M 7.6 Chi‐Chi, Taiwan earthquake of 1999, and the M 7.9 Wenchuan, China earthquake of 2008. Using data and insights from these and several other earthquakes, we analyze how such events initiate processes that change mountain landscapes, highlight research gaps, and suggest pathways toward a more complete understanding of the seismic effects on the Earth's surface.
A New Efficient Method to Solve the Stream Power Law Model Taking Into Account Sediment Deposition
(2019)
The stream power law model has been widely used to represent erosion by rivers but does not take into account the role played by sediment in modulating erosion and deposition rates. Davy and Lague (2009, ) provide an approach to address this issue, but it is computationally demanding because the local balance between erosion and deposition depends on sediment flux resulting from net upstream erosion. Here, we propose an efficient (i.e., O(N) and implicit) method to solve their equation. This means that, unlike other methods used to study the complete dynamics of fluvial systems (e.g., including the transition from detachment-limited to transport-limited behavior), our method is unconditionally stable even when large time steps are used. We demonstrate its applicability by performing a range of simulations based on a simple setup composed of an uplifting region adjacent to a stable foreland basin. As uplift and erosion progress, the mean elevations of the uplifting relief and the foreland increase, together with the average slope in the foreland. Sediments aggrade in the foreland and prograde to reach the base level where sediments are allowed to leave the system. We show how the topography of the uplifting relief and the stratigraphy of the foreland basin are controlled by the efficiency of river erosion and the efficiency of sediment transport by rivers. We observe the formation of a steady-state geometry in the uplifting region, and a dynamic steady state (i.e., autocyclic aggradation and incision) in the foreland, with aggradation and incision thicknesses up to tens of meters.
Bank filtration is an effective water treatment technique and is widely adopted in Europe along major rivers. It is the process where surface water penetrates the riverbed, flows through the aquifer, and then is extracted by near-bank production wells. By flowing in the subsurface flow passage, the water quality can be improved by a series of beneficial processes. Long-term riverbank filtration also produces colmation layers on the riverbed. The colmation layer may act as a bioactive zone that is governed by biochemical and physical processes owing to its enrichment of microbes and organic matter. Low permeability may strongly limit the surface water infiltration and further lead to a decreasing recoverable ratio of production wells.The removal of the colmation layer is therefore a trade-off between the treatment capacity and treatment efficiency. The goal of this Ph.D. thesis is to focus on the temporal and spatial change of the water quality and quantity along the flow path of a hydrogeological heterogeneous riverbank filtration site adjacent to an artificial-reconstructed (bottom excavation and bank reconstruction) canal in Potsdam, Germany.
To quantify the change of the infiltration rate, travel time distribution, and the thermal field brought by the canal reconstruction, a three-dimensional flow and heat transport model was created. This model has two scenarios, 1) ‘with’ canal reconstruction, and 2) ‘without’ canal reconstruction. Overall, the model calibration results of both water heads and temperatures matched those observed in the field study. In comparison to the model without reconstruction, the reconstruction model led to more water being infiltrated into the aquifer on that section, on average 521 m3/d, which corresponded to around 9% of the total pumping rate. Subsurface travel-time distribution substantially shifted towards shorter travel times. Flow paths with travel times <200 days increased by ~10% and those with <300 days by 15%. Furthermore, the thermal distribution in the aquifer showed that the seasonal variation in the scenario with reconstruction reaches deeper and laterally propagates further.
By scatter plotting of δ18O versus δ 2H, the infiltrated river water could be differentiated from water flowing in the deep aquifer, which may contain remnant landside groundwater from further north. In contrast, the increase of river water contribution due to decolmation could be shown by piper plot. Geological heterogeneity caused a substantial spatial difference in redox zonation among different flow paths, both horizontally and vertically. Using the Wilcoxon rank test, the reconstruction changed the redox potential differently in observation wells. However, taking the small absolute concentration level, the change is also relatively minor. The treatment efficiency for both organic matter and inorganic matter is consistent after the reconstruction, except for ammonium. The inconsistent results for ammonium could be explained by changes in the Cation Exchange Capacity (CEC) in the newly paved riverbed. Because the bed is new, it was not yet capable of keeping the newly produced ammonium by sorption and further led to the breakthrough of the ammonium plume. By estimation, the peak of the ammonium plume would reach the most distant observation well before February 2024, while the peaking concentration could be further dampened by sorption and diluted by the afterward low ammonium flow. The consistent DOC and SUVA level suggests that there was no clear preference for the organic matter removal along the flow path.
Oscillatory systems under weak coupling can be described by the Kuramoto model of phase oscillators. Kuramoto phase oscillators have diverse applications ranging from phenomena such as communication between neurons and collective influences of political opinions, to engineered systems such as Josephson Junctions and synchronized electric power grids. This thesis includes the author's contribution to the theoretical framework of coupled Kuramoto oscillators and to the understanding of non-trivial N-body dynamical systems via their reduced mean-field dynamics.
The main content of this thesis is composed of four parts. First, a partially integrable theory of globally coupled identical Kuramoto oscillators is extended to include pure higher-mode coupling. The extended theory is then applied to a non-trivial higher-mode coupled model, which has been found to exhibit asymmetric clustering. Using the developed theory, we could predict a number of features of the asymmetric clustering with only information of the initial state provided.
The second part consists of an iterated discrete-map approach to simulate phase dynamics. The proposed map --- a Moebius map --- not only provides fast computation of phase synchronization, it also precisely reflects the underlying group structure of the dynamics. We then compare the iterated-map dynamics and various analogous continuous-time dynamics. We are able to replicate known phenomena such as the synchronization transition of the Kuramoto-Sakaguchi model of oscillators with distributed natural frequencies, and chimera states for identical oscillators under non-local coupling.
The third part entails a particular model of repulsively coupled identical Kuramoto-Sakaguchi oscillators under common random forcing, which can be shown to be partially integrable. Via both numerical simulations and theoretical analysis, we determine that such a model cannot exhibit stationary multi-cluster states, contrary to the numerical findings in previous literature. Through further investigation, we find that the multi-clustering states reported previously occur due to the accumulation of discretization errors inherent in the integration algorithms, which introduce higher-mode couplings into the model. As a result, the partial integrability condition is violated.
Lastly, we derive the microscopic cross-correlation of globally coupled non-identical Kuramoto oscillators under common fluctuating forcing. The effect of correlation arises naturally in finite populations, due to the non-trivial fluctuations of the meanfield. In an idealized model, we approximate the finite-sized fluctuation by a Gaussian white noise. The analytical approximation qualitatively matches the measurements in numerical experiments, however, due to other periodic components inherent in the fluctuations of the mean-field there still exist significant inconsistencies.
In this volume, Egeberg and Trondal put forward an ‘organizational approach to public governance’ (p. 1) that, in their view, complements existing explanations for organizational change and behaviour in governance processes (‘Understanding’) and produces relevant advice for practitioners, specifically anyone involved in reorganizing public administration (‘Design’). Following the authors’ introduction of the theoretical reasoning behind their approach (chapter 1), they present supporting findings that are based on new material (chapters 2 and 9), but mainly draw on six previously published research articles (chapters 3–8). Egeberg and Trondal conclude with possible ‘design implications’ of said findings (chapter 9). Their ‘organizational approach’ focuses on the impact of selected organizational characteristics on decision‐making in and on behalf of government organizations in policy‐making generally (‘public governance’) and administrative politics more specifically (‘meta‐governance’). The authors concentrate on three sets of ‘classical’ organizational characteristics: structure (mainly vertical and horizontal specialization), demography (personnel composition), and locus (geographical location). The conceptual part of the volume convincingly summarizes ‘formal organization matters’—arguments from the literature for each of the individual organizational factors. Their main, already well‐established argument is that the way an organization is formally set up makes some (reform) decisions more likely than others—a line of reasoning that the authors present as neglected in governance literature.
In the following five empirical chapters, the authors show that aspects of horizontal and vertical specialization—mainly operationalized by Gulicks’ principles of horizontal specialization and the idea of primary versus secondary affiliation of staff—affect organizational behaviour. Readers learn that whether government levels are organized according to a territorial or non‐territorial principle impacts the power relationship between levels: non‐territorial organization at the supranational level tends to empower the centre against lower levels of government. There are two chapters on the decision‐making behaviour of commissioners and officials in the European Commission, both showing that organizational affiliation trumps demographic background factors such as nationality, even with temporary staff.
Chapter 5 addresses coordination dynamics in the European multi‐level system and finds that coordination at the territorially organized national level thwarts non‐territorially organized coordination at the supranational level, resulting in the phenomenon of ‘direct’ national administration bypassing their national executives. Further, the authors show that vertical specialization—while controlling for other factors such as issue salience—has an effect on officials’ behaviour at the national level: agency officials in Norway report significantly less sensitivity towards political signals from the political executive than their colleagues in ministries. Chapter 7 discusses the relevance of geographical location for the relationship between subordinated organizations and their political executive. The authors find that the site of Norwegian agencies does not significantly affect their autonomy, influence, or inter‐institutional coordination with the superior ministry.
The last empirical chapter focuses on the effect of formal organization on meta‐governance, that is, administrative politics. Based on a qualitative case study of a reorganization process in Norway in 2003 involving the synchronized relocation of several agencies after many failed attempts, the authors conclude that administrative reforms can be politically steered and controlled through the organization of the reform process. They argue that amongst other factors the strategic exclusion of opposing actors from the reform process as well as the deliberate increase in situations demanding quick decisions (‘action rationality’, p. 119) by political leaders helps explain the reform's unexpected success. The last chapter is dedicated to the synthesis of the results and to design implications. Supported by new data from a 2016 survey among Norwegian public officials, the authors conclude that organizational position is the most important influencer of decision‐making behaviour, with educational background and previous job experience also playing a large role (p. 135). Consequently, their suggestions for practitioners involved in meta‐governance processes concentrate on aspects of the deliberate crafting of organizational specialization to shape organizational positions, and spend less time discussing location and employee demographics. The authors illustrate and contextualize their recommendations with the help of three empirical examples: organizing good governance by balancing political control and independence in the case of agencification, organizing for coping with boundary‐spanning challenges such as climate change through inter‐organizational structural arrangements, and designing permanent organizational structures for innovative reforms in the public sector (pp. 137 ff.).
This volume is an excellent compilation of theoretically informed applications of the all too often undefined ‘organization matters’ argument. It juxtaposes—particularly in the theory chapter and in the last chapter on design implications—organizational arguments against other explanations of organizational change like historical institutionalism or the garbage can model of decision‐making. However, two major aspects of the book's approach are less convincing. First, supplementary explanations such as the garbage can model that are discussed in the reflections on meta‐governance are neither argumentatively nor empirically applied to public governance; why should, for example, the ‘solutions in search of a problem’ idea only be applicable to decisions on reform policy, but not to decisions in all other policy areas? Similarly, it would have been nice to read more on the authors’ idea on the interaction between organizational factors and between them and other explanations in the empirical cases on public governance—this would have allowed the reader to get a better idea about how much formal organization matters. The view on bureaucrats’ demographic background is slightly confusing: it is presented as a competing approach (p. 7), but also as one of the main organizational factors (p. 12).
Second, as the authors themselves state, the concept of governance is about ‘steering through collective action’ (p. 3) and focuses on interactive processes, and explicitly includes non‐governmental actors in the policy‐making equation. Against this background it seems unfortunate that most of the work presented in the book takes an exclusively governmental perspective and the justification for it remains rather superficial. It would be preferable and even necessary to see the organizational arguments—at least theoretically or through discussing appropriate literature—applied to interactive governance processes involving other actors and/or to non‐bureaucratic organizations.
Regarding its methodology, the specifics of the proposed approach deserve to be addressed more systematically and critically in the book. Except for chapters 2, 3 and 5 (literature‐based studies) as well as chapter 8 (single case study), the empirical studies follow a quantitative logic and are informed by data on self‐reported behaviour through large‐N panel surveys with public officials. In terms of analysis, descriptive statistics or basic inferential statistics (linear regression) are employed. Certainly, the authors are aware of the limitations of their data sources, such as the results being possibly affected by social desirability, and they discuss and justify them in the chapters individually (e.g., on pp. 47, 89). Still, their approach could be strengthened with a more cautious account on the extent to which their choice of data and methods is able to uncover the ‘causal impact of organizational factors in public governance processes’ (p. 131, emphasis added) and with some suggestions for widening their methodological toolbox in the future. On this note, the survey method presented as new on p. 135 is not a particularly convincing choice. The authors do not lay out a research agenda; a surprising omission. This is, however, somewhat made up for by the concluding chapter's stimulating discussion of the possible real‐world implications of their findings and perspective, skilfully using organization theory as a ‘craft’ (p. 29).
Objective: We investigated the effects of combined balance and strength training on measures of balance and muscle strength in older women with a history of falls.
Methods: Twenty-seven older women aged 70.4 ± 4.1 years (age range: 65 to 75 years) were randomly allocated to either an intervention (IG, n = 12) or an active control (CG, n = 15) group. The IG completed 8 weeks combined balance and strength training program with three sessions per week including visual biofeedback using force plates. The CG received physical therapy and gait training at a rehabilitation center. Training volumes were similar between the groups. Pre and post training, tests were applied for the assessment of muscle strength (weight-bearing squat [WBS] by measuring the percentage of body mass borne by each leg at different knee flexions [0°, 30°, 60°, and 90°], sit-to-stand test [STS]), and balance. Balance tests used the modified clinical test of sensory interaction (mCTSIB) with eyes closed (EC) and opened (EO), on stable (firm) and unstable (foam) surfaces as well as spatial parameters of gait such as step width and length (cm) and walking speed (cm/s).
Results: Significant group × time interactions were found for different degrees of knee flexion during WBS (0.0001 < p < 0.013, 0.441 < d < 0.762). Post hoc tests revealed significant pre-to-post improvements for both legs and for all degrees of flexion (0.0001 < p < 0.002, 0.697 < d < 1.875) for IG compared to CG. Significant group × time interactions were found for firm EO, foam EO, firm EC, and foam EC (0.006 < p < 0.029; 0.302 < d < 0.518). Post hoc tests showed significant pre-to-post improvements for both legs and for all degrees of oscillations (0.0001 < p < 0.004, 0.753 < d < 2.097) for IG compared to CG. This study indicates that combined balance and strength training improved percentage distribution of body weight between legs at different conditions of knee flexion (0°, 30°, 60°, and 90°) and also decreased the sway oscillation on a firm surface with eyes closed, and on foam surface (with eyes opened or closed) in the IG.
Conclusion: The higher positive effects of training seen in standing balance tests, compared with dynamic tests, suggests that balance training exercises including lateral, forward, and backward exercises improved static balance to a greater extent in older women.
Objective: We investigated the effects of combined balance and strength training on measures of balance and muscle strength in older women with a history of falls.
Methods: Twenty-seven older women aged 70.4 ± 4.1 years (age range: 65 to 75 years) were randomly allocated to either an intervention (IG, n = 12) or an active control (CG, n = 15) group. The IG completed 8 weeks combined balance and strength training program with three sessions per week including visual biofeedback using force plates. The CG received physical therapy and gait training at a rehabilitation center. Training volumes were similar between the groups. Pre and post training, tests were applied for the assessment of muscle strength (weight-bearing squat [WBS] by measuring the percentage of body mass borne by each leg at different knee flexions [0°, 30°, 60°, and 90°], sit-to-stand test [STS]), and balance. Balance tests used the modified clinical test of sensory interaction (mCTSIB) with eyes closed (EC) and opened (EO), on stable (firm) and unstable (foam) surfaces as well as spatial parameters of gait such as step width and length (cm) and walking speed (cm/s).
Results: Significant group × time interactions were found for different degrees of knee flexion during WBS (0.0001 < p < 0.013, 0.441 < d < 0.762). Post hoc tests revealed significant pre-to-post improvements for both legs and for all degrees of flexion (0.0001 < p < 0.002, 0.697 < d < 1.875) for IG compared to CG. Significant group × time interactions were found for firm EO, foam EO, firm EC, and foam EC (0.006 < p < 0.029; 0.302 < d < 0.518). Post hoc tests showed significant pre-to-post improvements for both legs and for all degrees of oscillations (0.0001 < p < 0.004, 0.753 < d < 2.097) for IG compared to CG. This study indicates that combined balance and strength training improved percentage distribution of body weight between legs at different conditions of knee flexion (0°, 30°, 60°, and 90°) and also decreased the sway oscillation on a firm surface with eyes closed, and on foam surface (with eyes opened or closed) in the IG.
Conclusion: The higher positive effects of training seen in standing balance tests, compared with dynamic tests, suggests that balance training exercises including lateral, forward, and backward exercises improved static balance to a greater extent in older women.
Oceanic Anoxic Event-2 (OAE-2; Cenomanian-Turonian) is characterized by extensive deposition of organic carbon-rich deposits (black shales) in ocean basins worldwide as result of a major perturbation of the global carbon cycle. While the sedimentological, geochemical, and paleontological aspects of deep water expressions of OAE-2 have been intensively studied in the last few decades, much less attention has been given to the coeval shallow water deposits. In this study, we present the results of a detailed facies and petrographic (optical microscope and scanning electron microscopy) and geochemical studies (delta C-13(carb), delta C-13 (org), delta N-15(bulk), TOC, and Rock-Eval pyrolysis) on two key shallow marine sections from the Apennine Carbonate Platform (ACP; Italy). Here a continuous record of shallow water carbonates through the OAE-2 interval is preserved, offering the unique opportunity to document the archive of paleoenvironmental changes in a neritic setting, at a tropical latitude and far from the influence of a large continental block. Two conspicuous intervals are characterized by abundant and closely spaced dark microbial laminites found at correlative stratigraphic horizons in the two stratigraphic sections. These laminites contain elevated concentrations of TOC (up to 1%) relative to microbial capping cycles laminites stratigraphically above and below. The organic matter preserved in these fine-grained laminites is dominated by cyanobacteria remains, which accounted for most of the organic matter produced on the ACP in these intervals. Our study suggests that Tethyan carbonate platforms experienced significant biological changes during OAE-2, alternating, in few kiloyears, between eutrophic phases dominated by microbial communities and mesotrophic/oligotrophic conditions favoring normal carbonate production/sedimentation. The synchronous occurrence of microbialite facies at different locations across the ACP and on other platforms worldwide (e.g., Mexico and Croatia) suggests a causal link between Large Igneous Province volcanism and the environmental conditions necessary to trigger cyanobacterial proliferation on shallow carbonate platforms.
The purpose of this study was to examine the acute effects of short-term Achilles tendon vibration on plantar flexor torque, twitch contractile properties as well as muscle and cortical activity in young athletes. Eleven female elite soccer players aged 15.6 +/- 0.5 years participated in this study. Three different conditions were applied in randomized order: Achilles tendon vibration (80 Hz) for 30 and 300 s, and a passive control condition (300 s). Tests at baseline and following conditions included the assessment of peak plantar flexor torque during maximum voluntary contraction, electrically evoked muscle twitches (e.g., potentiated twitch peak torque [PT]), and electromyographic (EMG) activity of the plantar flexors. Additionally, electroencephalographic (EEG) activity of the primary motor and somatosensory cortex were assessed during a submaximal dynamic concentric-eccentric plantar flexion exercise using an elastic rubber band. Large-sized main effects of condition were found for EEG absolute alpha-1 and beta-1 band power (p <= 0.011; 1.5 <= d <= 2.6). Post-hoc tests indicated that alpha-1 power was significantly lower at 30 and 300 s (p = 0.009; d = 0.8) and beta-1 power significantly lower at 300 s (p < 0.001; d = 0.2) compared to control condition. No significant effect of condition was found for peak plantar flexor torque, electrical evoked muscle twitches, and EMG activity. In conclusion, short-term local Achilles tendon vibration induced lower brain activity (i.e., alpha-1 and beta-1 band power) but did not affect lower limb peak torque, twitch contractile properties, and muscle activity. Lower brain activity following short-term local Achilles tendon vibration may indicate improved cortical function during a submaximal dynamic exercise in female young soccer players.
Microporous nitrogen-rich carbon fibers (HAT-CNFs) are produced by electrospinning a mixture of hexaazatriphenylene-hexacarbonitrile (HAT-CN) and polyvinylpyrrolidone and subsequent thermal condensation. Bonding motives, electronic structure, content of nitrogen heteroatoms, porosity, and degree of carbon stacking can be controlled by the condensation temperature due to the use of the HAT-CN with predefined nitrogen binding motives. The HAT-CNFs show remarkable reversible capacities (395 mAh g(-1) at 0.1 A g(-1)) and rate capabilities (106 mAh g(-1) at 10 A g(-1)) as an anode material for sodium storage, resulting from the abundant heteroatoms, enhanced electrical conductivity, and rapid charge carrier transport in the nanoporous structure of the 1D fibers. HAT-CNFs also serve as a series of model compounds for the investigation of the contribution of sodium storage by intercalation and reversible binding on nitrogen sites at different rates. There is an increasing contribution of intercalation to the charge storage with increasing condensation temperature which becomes less active at high rates. A hybrid sodium-ion capacitor full cell combining HAT-CNF as the anode and salt-templated porous carbon as the cathode provides remarkable performance in the voltage range of 0.5-4.0 V (95 Wh kg(-1) at 0.19 kW kg(-1) and 18 Wh kg(-1) at 13 kW kg(-1)).
Die ersten 40 Rechtsprofessoren der Viadrina immatrikulierten sich von 1506 bis 1571 in Frankfurt an der Oder. Sie lassen sich in zwei Gruppen einteilen, die von der Gründung der Universität 1506 bis 1539 Immatrikulierten und die nach Einführung der Reformation im Kurfürstentum Brandenburg 1539/40 bis zum Regierungsantritt des Kurfürsten Johann Georg von Brandenburg 1571 an der Viadrina eingeschriebenen Juristen. Die Profile der vorreformatorischen und der nachreformatorischen Rechtsexperten weisen Gemeinsamkeiten, z.B. die Eheschließung, aber auch Unterschiede auf. Am besten illustriert das Beispiel der Rechtsprofessorendynastien Zoch und Köppen die "Familienuniversität" Viadrina.
We study the experimentally measured ciprofloxacin antibiotic diffusion through a gel-like artificial sputum medium (ASM) mimicking physiological conditions typical for a cystic fibrosis layer, in which regions occupied by Pseudomonas aeruginosa bacteria are present. To quantify the antibiotic diffusion dynamics we employ a phenomenological model using a subdiffusion-absorption equation with a fractional time derivative. This effective equation describes molecular diffusion in a medium structured akin Thompson’s plumpudding model; here the ‘pudding’ background represents the ASM and the ‘plums’ represent the bacterial biofilm. The pudding is a subdiffusion barrier for antibiotic molecules that can affect bacteria found in plums. For the experimental study we use an interferometric method to determine the time evolution of the amount of antibiotic that has diffused through the biofilm. The theoretical model shows that this function is qualitatively different depending on whether or not absorption of the antibiotic in the biofilm occurs. We show that the process can be divided into three successive stages: (1) only antibiotic subdiffusion with constant biofilm parameters, (2) subdiffusion and absorption of antibiotic molecules with variable biofilm transport parameters, (3) subdiffusion and absorption in the medium but the biofilm parameters are constant again. Stage 2 is interpreted as the appearance of an intensive defence build–up of bacteria against the action of the antibiotic, and in the stage 3 it is likely that the bacteria have been inactivated. Times at which stages change are determined from the experimentally obtained temporal evolution of the amount of antibiotic that has diffused through the ASM with bacteria. Our analysis shows good agreement between experimental and theoretical results and is consistent with the biologically expected biofilm response. We show that an experimental method to study the temporal evolution of the amount of a substance that has diffused through a biofilm is useful in studying the processes occurring in a biofilm. We also show that the complicated biological process of antibiotic diffusion in a biofilm can be described by a fractional subdiffusion-absorption equation with subdiffusion and absorption parameters that change over time.
We study the experimentally measured ciprofloxacin antibiotic diffusion through a gel-like artificial sputum medium (ASM) mimicking physiological conditions typical for a cystic fibrosis layer, in which regions occupied by Pseudomonas aeruginosa bacteria are present. To quantify the antibiotic diffusion dynamics we employ a phenomenological model using a subdiffusion-absorption equation with a fractional time derivative. This effective equation describes molecular diffusion in a medium structured akin Thompson’s plumpudding model; here the ‘pudding’ background represents the ASM and the ‘plums’ represent the bacterial biofilm. The pudding is a subdiffusion barrier for antibiotic molecules that can affect bacteria found in plums. For the experimental study we use an interferometric method to determine the time evolution of the amount of antibiotic that has diffused through the biofilm. The theoretical model shows that this function is qualitatively different depending on whether or not absorption of the antibiotic in the biofilm occurs. We show that the process can be divided into three successive stages: (1) only antibiotic subdiffusion with constant biofilm parameters, (2) subdiffusion and absorption of antibiotic molecules with variable biofilm transport parameters, (3) subdiffusion and absorption in the medium but the biofilm parameters are constant again. Stage 2 is interpreted as the appearance of an intensive defence build–up of bacteria against the action of the antibiotic, and in the stage 3 it is likely that the bacteria have been inactivated. Times at which stages change are determined from the experimentally obtained temporal evolution of the amount of antibiotic that has diffused through the ASM with bacteria. Our analysis shows good agreement between experimental and theoretical results and is consistent with the biologically expected biofilm response. We show that an experimental method to study the temporal evolution of the amount of a substance that has diffused through a biofilm is useful in studying the processes occurring in a biofilm. We also show that the complicated biological process of antibiotic diffusion in a biofilm can be described by a fractional subdiffusion-absorption equation with subdiffusion and absorption parameters that change over time.
An effective training program needs to be customized to the specific
demands of the redpective sport. Therefore, it is important to
conduct a needs analysis to gain information on the unique
characteristics of the sport. The objectives of thes review were (A)
to conduct a systematic needs analysis of karate kumite and (B) to
provide practical recommendations for sport-specific performance
testing and training of karate kumite athletes.
Obwohl Latein eine nicht mehr gesprochene Sprache ist und ihr deswegen kein kommunikativer Nutzen zukommt, ist die Anzahl der Latein als Schulfach wählenden Schüler im Zeitverlauf angestiegen. Mehrere Studien haben zudem gezeigt, dass Lateinkenntnisse weder das logische Denken, noch den Erwerb anderer Sprachen, noch das Gespür für die grammatikalische Struktur der Muttersprache verbessern. Auch wenn sich empirisch keine Vorteile des Erwerbs alter Sprachen nachweisen lassen, können Menschen subjektiv an solche Vorteile glauben und ihr Verhalten an ihrer Konstruktion von Wirklichkeit ausrichten. Auf der Basis einer unter Eltern von Gymnasialschülern durchgeführten Befragung zeigen wir, dass Latein umfassende Transfereffekte zugeschrieben und Personen mit Lateinkenntnissen positiver bewertet werden als Personen mit Kenntnissen moderner Sprachen. Weiterhin zeigt sich, dass die „Illusio“ der Vorteile von Latein zwar in allen Bildungsgruppen wirksam ist, doch besonders von den Hochgebildeten vertreten wird. Sie arbeiten damit an der Konstruktion einer Realität, von der sie selbst die größten Nutznießer sind, indem sie Latein als symbolisches Kapital verwenden.