### Refine

#### Year of publication

#### Document Type

- Article (732)
- Monograph/Edited Volume (424)
- Preprint (378)
- Doctoral Thesis (122)
- Other (36)
- Postprint (24)
- Review (12)
- Conference Proceeding (7)
- Part of a Book (2)
- Master's Thesis (2)

#### Language

- English (1478)
- German (250)
- French (7)
- Italien (3)
- Multiple languages (1)

#### Keywords

- index (12)
- Fredholm property (10)
- boundary value problems (10)
- cluster expansion (9)
- elliptic operators (9)
- K-theory (7)
- manifolds with singularities (7)
- pseudodifferential operators (7)
- Cauchy problem (6)
- Toeplitz operators (6)

#### Institute

- Institut für Mathematik (1739) (remove)

In this thesis, we discuss the characterization of orthogroups by so-called disjunctions of identities. The orthogroups are a subclass of the class of completely regular semigroups, a generalization of the concept of a group. Thus there is for all elements of an orthogroup some kind of an inverse element such that both elements commute. Based on a fundamental result by A.H. Clifford, every completely regular semigroup is a semilattice of completely simple semigroups. This allows the description the gross structure of such semigroup. In particular every orthogroup is a semilattice of rectangular groups which are isomorphic to direct products of rectangular bands and groups. Semilattices of rectangular groups coming from various classes are characterized using the concept of an alternative variety, a generalization of the classical idea of a variety by Birkhoff.
After starting with some fundamental definitions and results concerning semigroups, we introduce the concept of disjunctions of identities and summarize some necessary properties. In particular we present some disjunction of identities which is sufficient for a semigroup for being completely regular. Furthermore we derive from this identity some statements concerning Rees matrix semigroups, a possible representation of completely simple semigroups. A main result of this thesis is the general description of disjunctions of identities such that a completely regular semigroup satisfying the described identity is a semilattice of left groups (right groups / groups). In this case the completely regular semigroup is an orthogroup. Furthermore we define various classes of rectangular groups such that there is an exponent taken from a set of pairwise coprime positive integers. An important result is the characterization of the class of all semilattices of particular rectangular groups (taken from the classes defined before) using a set-theoretic minimal set of disjunctions of identities. Additionally we investigate semilattices of groups (so-called Clifford semigroups). For this purpose we consider abelian groups of particular exponents and prove some well-known results from the theory of Clifford semigroups in an alternative way applying the concept of disjunctions of identities. As a practical application of the results concerning semilattices of left zero semigroups and right zero semigroups we identify a particular transformation semigroup. For more detailed information about the product of two arbitrary elements of a semilattice of semigroups we introduce the concept of strong semilattices of semigroups. It is well-known that a semilattice of groups is a strong semilattice of groups. So we can characterize a strong semilattice of groups of particular pairwise coprime exponents by disjunctions of identities. Additionally we describe the class of all strong semilattices of left zero semigroups and right zero semigroups with the help of such kind of identity, and we relate this statement to the theory of normal bands. A possible extension of the already described semilattices of rectangular groups can be achieved by an auxiliary total order (in terms of chains of semigroups). To this end we present a corresponding characterization due to disjunctions of identities which is obviously minimal. A list of open questions which have arisen during the research for this thesis, but left crude, is attached.

In the thesis there are constructed new quantizations for pseudo-differential boundary value problems (BVPs) on manifolds with edge. The shape of operators comes from Boutet de Monvel’s calculus which exists on smooth manifolds with boundary. The singular case, here with edge and boundary, is much more complicated. The present approach simplifies the operator-valued symbolic structures by using suitable Mellin quantizations on infinite stretched model cones of wedges with boundary. The Mellin symbols themselves are, modulo smoothing ones, with asymptotics, holomorphic in the complex Mellin covariable. One of the main results is the construction of parametrices of elliptic elements in the corresponding operator algebra, including elliptic edge conditions.

Audience Response Systeme (ARS) stellen eine Ergänzung der Hochschullehre dar, um die Teilnehmeraktivierung zu stärken und die Studierenden unmittelbar in das Vorlesungsgeschehen einzubinden. Es existiert eine Fülle an Lösungen, die entweder ohne dedizierte Hardware auskommen (sogenannte Software-Clicker) oder die Anschaffung meist kommerzieller Hardware- Lösungen voraussetzen. An dieser Stelle versucht Hands. UP eine integrative Brücke zu schlagen. Auf Grundlage einer Kosten- und Aufwandsschätzung ausgewählter ARS-Lösungen soll die Notwendigkeit hochschulübergreifender Kooperationen hinsichtlich einer adäquate Weiterentwicklung und des Einsatzes von ARS in der Lehre motiviert werden.

Ausgehend von der typischen IT‐Infrastruktur für E‐Learning an Hochschulen auf der einen Seite sowie vom bisherigen Stand der Forschung zu Personal Learning Environments (PLEs) auf der anderen Seite zeigt dieser Beitrag auf, wie bestehende Werkzeuge bzw. Dienste zusammengeführt und für die Anforderungen der modernen, rechnergestützten Präsenzlehre aufbereitet werden können. Für diesen interdisziplinären Entwicklungsprozess bieten sowohl klassische Softwareentwicklungsverfahren als auch bestehende PLE‐Modelle wenig Hilfestellung an. Der Beitrag beschreibt die in einem campusweiten Projekt an der Universität Potsdam verfolgten Ansätze und die damit erzielten Ergebnisse. Dafür werden zunächst typische Lehr‐/Lern‐bzw. Kommunikations‐Szenarien identifiziert, aus denen Anforderungen an eine unterstützende Plattform abgeleitet werden. Dies führt zu einer umfassenden Sammlung zu berücksichtigender Dienste und deren Funktionen, die gemäß den Spezifika ihrer Nutzung in ein Gesamtsystem zu integrieren sind. Auf dieser Basis werden grundsätzliche Integrationsansätze und technische Details dieses Mash‐Ups in einer Gesamtschau aller relevanten Dienste betrachtet und in eine integrierende Systemarchitektur überführt. Deren konkrete Realisierung mit Hilfe der Portal‐Technologie Liferay wird dargestellt, wobei die eingangs definierten Szenarien aufgegriffen und exemplarisch vorgestellt werden. Ergänzende Anpassungen im Sinne einer personalisierbaren bzw. adaptiven Lern‐(und Arbeits‐)Umgebung werden ebenfalls unterstützt und kurz aufgezeigt.

In 2015 the second conference „Cloud Storage Deployment in Academics“ took place. Interest regarding this issue was again high and topics established in 2014 like data security and scalability were complemented by new ones like federations or technical integration in existing infrastructures. This is caused by the advances in the establishment of cloud-based storage systems. This publication contains the contributions of the conference „Cloud Storage Deployment in Academics 2015“, which took place in may 2015 at TU Berlin.

Neue Medien“ war über viele Jahre hinweg das Codewort für Computer, die den Einzug in den Schulunterricht schaffen sollten – wenn es nach den Befürwortern ging. Die Widerstände, gerade in der Grundschule, waren groß und vielfältig. Es ist verständlich, dass kurz nach der spielerischen Heranführung an Bildung im Kindergarten, in einer Zeit, in der die Schülerinnen und Schüler auch das soziale Miteinander einüben müssen und auch fein- und grobmotorische Fähigkeiten erwerben sollen, das vereinzelnde Sitzen vor einem Bildschirm nicht zu den obersten Prioritäten gehört – und auch unserer Meinung nach nicht gehören sollte. In den letzten Jahren hat sich der Begriff der neuen Medien aber verändert, und das, was bisher damit verbunden wurde, ist mit der „Digitalisierung“ nicht nur des Schulunterrichts, sondern des ganzen Lebens, zu einem Dreh- und Angelpunkt der Bildung geworden. Statt klobigen Computern mit Bildschirmen, die das Miteinander schon über die Ausstattung der Computerräume in die falsche Bahn lenken, haben mobile Geräte in der Hand der Schülerinnen und Schüler übernommen. Diese können nun gemeinsam an einem Gerät arbeiten, sie können direkt mit den Bildschirminhalten interagieren, sie können die Kameras, Mikrophone und Sensoren nutzen, um authentische Daten zu erfassen und zu verarbeiten, sie können auch außerhalb des Klassenraums oder der Schule damit arbeiten und haben inzwischen fast jederzeit das ganze Wissen des Internets mit dabei. Schwerpunkt dieses Bandes ist daher der Umgang mit Tablets und den darauf laufenden „Apps“ im Mathematikunterricht. In fünf Beiträgen werden konkrete Unterrichtsvorschläge gemacht, die als Blaupausen für App-gestützten Unterricht dienen können. Ergänzt wird dieser Band durch einen allgemeinen Leitfaden zur Beurteilung von Apps für den Mathematikunterricht samt Beispielen.

Die Lehre von wissenschaftlichem Arbeiten stellt einen zentralen Aspekt in forschungsorientierten Studiengängen wie der Informatik dar. Trotz diverser Angebote werden mittel- und langfristig Mängel in der
Arbeitsqualität von Studierenden sichtbar. Dieses Paper analysiert daher das Profil der Studierenden, deren Anwendung des wissenschaftlichen Arbeitens, und das Angebot von Proseminaren zum Thema „Einführung in das wissenschaftliche Arbeiten“ einer deutschen Universität. Die Ergebnisse mehrerer Erhebungen zeigen dabei diverse Probleme bei Studierenden auf, u. a. bei dem Prozessverständnis, dem Zeitmanagement und der Kommunikation.

In diesem Artikel werden die Ergebnisse einer explorativen Datenanalyse über die Studierendenperformance in Klausur- und Hausaufgaben eines Einführungskurses der Theoretischen Informatik vorgestellt. Da bisher empirisch wenig untersucht ist, welche Probleme Studierenden in den Einführungskursen haben und die Durchfallquoten in diesen Kursen sehr hoch sind, soll auf diesem Weg ein Überblick gegeben werden. Die Ergebnisse zeigen, dass alle Studierenden unabhängig von ihrer Klausurnote die niedrigste Performance in den Klausur- und Hausaufgaben aufweisen, in denen formale Beweise gefordert sind. Dieses Ergebnis stärkt die Vermutung, dass didaktische
Ansätze und Maßnahmen sich insbesondere auf das Erlernen formaler Beweismethoden fokussieren sollten, um Informatik-Studierende nachhaltiger dabei zu unterstützen, in Theoretischer Informatik erfolgreich zu sein.

Was ist Data Science?
(2018)

In Zusammenhang mit den Entwicklungen der vergangenen Jahre, insbesondere in den Bereichen Big Data, Datenmanagement und Maschinenlernen, hat sich der Umgang mit Daten und deren Analyse wesentlich weiterentwickelt. Mittlerweile wird die Datenwissenschaft als eigene Disziplin angesehen, die auch immer stärker durch entsprechende Studiengänge an Hochschulen repräsentiert wird. Trotz dieser zunehmenden Bedeutung ist jedoch oft unklar, welche konkreten Inhalte mit ihr in Verbindung stehen, da sie in verschiedensten Ausprägungen auftritt. In diesem Beitrag werden daher die hinter der Data Science stehenden informatischen Inhalte durch eine qualitative Analyse der Modulhandbücher etablierter Studiengänge aus diesem Bereich ermittelt und so ein Beitrag zur Charakterisierung dieser Disziplin geleistet. Am Beispiel der Entwicklung eines Data-Literacy-Kompetenzmodells, die als Ausblick skizziert wird, wird die Bedeutung dieser Charakterisierung für die weitere Forschung expliziert.

Empirische Untersuchungen von Lückentext-Items zur Beherrschung der Syntax einer Programmiersprache
(2018)

Lückentext-Items auf der Basis von Programmcode können eingesetzt werden, um Kenntnisse in der Syntax einer Programmiersprache zu prüfen, ohne dazu komplexe Programmieraufgaben zu stellen, deren Bearbeitung weitere Kompetenzen erfordert. Der vorliegende Beitrag dokumentiert den Einsatz von insgesamt zehn derartigen Items in einer universitären Erstsemestervorlesung zur Programmierung mit Java. Es werden sowohl Erfahrungen mit der Konstruktion der Items als auch empirische Daten aus dem Einsatz diskutiert. Der Beitrag zeigt dadurch insbesondere die Herausforderungen bei der Konstruktion valider Instrumente zur Kompetenzmessung in der Programmierausbildung auf. Die begrenzten und teilweise vorläufigen Ergebnisse zur Qualität der erzeugten Items legen trotzdem nahe, dass Erstellung und Einsatz entsprechender Items möglich ist und einen Beitrag zur Kompetenzmessung leisten kann.

In der dualen IT-Ausbildung als Verbindung von beruflicher und akademischer Qualifikation werden die berufstypischen Werkzeuge, wie z. B. Laptops, ebenso in den Lehr-Lern-Prozessen der akademischen Unterrichtseinheiten eingesetzt. Im Prüfungswesen wird oft auf klassische Papierklausuren zurückgegriffen. Unterrichtseinheiten mit hohem Blended-Learning-Anteil ohne E-Prüfung werden dabei als „nicht konsistent“ wahrgenommen. In diesem Artikel wird eine empirische Studie dargelegt, die untersucht, welche Einflüsse aus der persönlichen Lernbiografie bei den Lehrenden in einer dualen IT-Ausbildung dazu führen können, die Möglichkeiten eines E-Assessments als summative Modulprüfung anzunehmen oder abzulehnen. Beispielhaft wurden in der dargelegten Studie Interviews mit Dozenten geführt und diese hinsichtlich der Verbindung zwischen Lernbiografie, Gestaltung der Didaktik der Lehr-Lern-Prozesse, Zufriedenheit und Veränderungsbereitschaft untersucht.

Im Rahmen eines Informatikstudiums wird neben theoretischen Grundlagen und Programmierfähigkeiten auch gezielt vermittelt, wie moderne Software in der Praxis entwickelt wird. Dabei wird oftmals eine Form der Projektarbeit gewählt, um Studierenden möglichst realitätsnahe Erfahrungen zu ermöglichen. Die Studierenden entwickeln einzeln oder in kleineren Teams Softwareprodukte für ausgewählte Problemstellungen. Neben fachlichen Inhalte stehen durch gruppendynamische Prozesse auch überfachliche Kompetenzen im Fokus. Dieser Beitrag präsentiert eine Interviewstudie mit Dozierenden von Softwareprojektpraktika an der RWTH Aachen und konzentriert sich auf die Ausgestaltung der Veranstaltungen sowie Förderung von überfachlichen Kompetenzen nach einem Kompetenzprofil für Softwareingenieure.

Um beim Berufseinstieg erfolgreich als Informatiker wirken zu können, reicht es oft nicht aus nur separierte Kenntnisse über technische und theoretische Grundlagen, Programmiersprachen, Werkzeuge und Selbst- und Zeitmanagement zu besitzen. Vielmehr sollten Absolventen diese Kenntnisse praktisch miteinander verzahnt einsetzen können. An der Universität wird Studierenden leider selten die Möglichkeit geboten, diese verschiedenen Bereiche der Informatik miteinander integriert auszuüben. Dafür entwickeln wir seit über zwei Dekaden ein Lehr- und Lernkonzept zur Unterstützung praktischer Softwareentwicklungsveranstaltungen und setzen dieses um. Dadurch bieten wir angehenden SoftwareentwicklerInnen und ProjektmanagerInnen eine Umgebung, in der sie neues, praktisch relevantes Wissen erwerben können, sich selbst praktisch erproben und ihr Wissen konkret einsetzen können. Hier legen wir einen Schwerpunkt auf das Arbeiten im Team. Das hier vorgestellte Konzept kann auf ähnliche Lehrveranstaltungen übertragen und aufgrund seiner Modularisierung verändert und erweitert werden.

Vorlesungs-Pflege
(2018)

Ähnlich zu Alterungsprozessen bei Software degenerieren auch Vorlesungen, wenn sie nicht hinreichend gepflegt werden. Die Gründe hierfür werden ebenso beleuchtet wie mögliche Indikatoren und Maßnahmen – der Blick ist dabei immer der eines Informatikers. An drei Vorlesungen wird erläutert, wie der Degeneration von Lehrveranstaltungen
gegengewirkt werden kann. Mangels hinreichend großer empirischer Daten liefert das Paper keine unumstößlichen Wahrheiten. Ein Ziel ist es vielmehr Kollegen, die ähnliche Phänomene beobachten, einen ersten Anker für einen
inneren Diskurs zu bieten. Ein langfristiges Ziel ist die Sammlung eines Katalogs an Maßnahmen zur Pflege von Informatikvorlesungen.

Students of computer science studies enter university education with very different competencies, experience and knowledge. 145 datasets collected of freshmen computer science students by learning management systems in relation to exam outcomes and learning dispositions data (e. g. student dispositions, previous experiences and attitudes measured through self-reported surveys) has been exploited to identify indicators as predictors of academic success and hence make effective interventions to deal with an extremely heterogeneous group of students.

Um für ein Leben in der digitalen Gesellschaft vorbereitet zu sein, braucht jeder heute in verschiedenen Situationen umfangreiche informatische Grundlagen. Die Bedeutung von Informatik nimmt nicht nur in immer mehr
Bereichen unseres täglichen Lebens zu, sondern auch in immer mehr Ausbildungsrichtungen. Um junge Menschen auf ihr zukünftiges Leben und/oder ihre zukünftige berufliche Tätigkeit vorzubereiten, bieten verschiedene Hochschulen Informatikmodule für Studierende anderer Fachrichtungen an. Die Materialien jener Kurse bilden einen umfangreichen Datenpool, um die für Studierende anderer Fächer bedeutenden Aspekte der Informatik mithilfe eines empirischen Ansatzes zu identifizieren. Im Folgenden werden 70 Module zu informatischer Bildung für Studierende anderer Fachrichtungen analysiert. Die Materialien – Publikationen, Syllabi und Stundentafeln – werden zunächst mit einer qualitativen Inhaltsanalyse nach Mayring untersucht und anschließend quantitativ ausgewertet. Basierend auf der Analyse werden Ziele, zentrale Themen und Typen eingesetzter Werkzeuge identifiziert.

A doppelalgebra is an algebra defined on a vector space with two binary linear associative operations. Doppelalgebras play a prominent role in algebraic K-theory. We consider doppelsemigroups, that is, sets with two binary associative operations satisfying the axioms of a doppelalgebra. Doppelsemigroups are a generalization of semigroups and they have relationships with such algebraic structures as interassociative semigroups, restrictive bisemigroups, dimonoids, and trioids.
In the lecture notes numerous examples of doppelsemigroups and of strong doppelsemigroups are given. The independence of axioms of a strong doppelsemigroup is established. A free product in the variety of doppelsemigroups is presented. We also construct a free (strong) doppelsemigroup, a free commutative (strong) doppelsemigroup, a free n-nilpotent (strong) doppelsemigroup, a free n-dinilpotent (strong) doppelsemigroup, and a free left n-dinilpotent doppelsemigroup. Moreover, the least commutative congruence, the least n-nilpotent congruence, the least n-dinilpotent congruence on a free (strong) doppelsemigroup and the least left n-dinilpotent congruence on a free doppelsemigroup are characterized.
The book addresses graduate students, post-graduate students, researchers in algebra and interested readers.

The Cauchy problem for the linearised Einstein equation and the Goursat problem for wave equations
(2017)

In this thesis, we study two initial value problems arising in general relativity. The first is the Cauchy problem for the linearised Einstein equation on general globally hyperbolic spacetimes, with smooth and distributional initial data. We extend well-known results by showing that given a solution to the linearised constraint equations of arbitrary real Sobolev regularity, there is a globally defined solution, which is unique up to addition of gauge solutions. Two solutions are considered equivalent if they differ by a gauge solution. Our main result is that the equivalence class of solutions depends continuously on the corre- sponding equivalence class of initial data. We also solve the linearised constraint equations in certain cases and show that there exist arbitrarily irregular (non-gauge) solutions to the linearised Einstein equation on Minkowski spacetime and Kasner spacetime.
In the second part, we study the Goursat problem (the characteristic Cauchy problem) for wave equations. We specify initial data on a smooth compact Cauchy horizon, which is a lightlike hypersurface. This problem has not been studied much, since it is an initial value problem on a non-globally hyperbolic spacetime. Our main result is that given a smooth function on a non-empty, smooth, compact, totally geodesic and non-degenerate Cauchy horizon and a so called admissible linear wave equation, there exists a unique solution that is defined on the globally hyperbolic region and restricts to the given function on the Cauchy horizon. Moreover, the solution depends continuously on the initial data. A linear wave equation is called admissible if the first order part satisfies a certain condition on the Cauchy horizon, for example if it vanishes. Interestingly, both existence of solution and uniqueness are false for general wave equations, as examples show. If we drop the non-degeneracy assumption, examples show that existence of solution fails even for the simplest wave equation. The proof requires precise energy estimates for the wave equation close to the Cauchy horizon. In case the Ricci curvature vanishes on the Cauchy horizon, we show that the energy estimates are strong enough to prove local existence and uniqueness for a class of non-linear wave equations. Our results apply in particular to the Taub-NUT spacetime and the Misner spacetime. It has recently been shown that compact Cauchy horizons in spacetimes satisfying the null energy condition are necessarily smooth and totally geodesic. Our results therefore apply if the spacetime satisfies the null energy condition and the Cauchy horizon is compact and non-degenerate.

The first main goal of this thesis is to develop a concept of approximate differentiability of higher order for subsets of the Euclidean space that allows to characterize higher order rectifiable sets, extending somehow well known facts for functions. We emphasize that for every subset A of the Euclidean space and for every integer k ≥ 2 we introduce the approximate differential of order k of A and we prove it is a Borel map whose domain is a (possibly empty) Borel set. This concept could be helpful to deal with higher order rectifiable sets in applications.
The other goal is to extend to general closed sets a well known theorem of Alberti on the second order rectifiability properties of the boundary of convex bodies. The Alberti theorem provides a stratification of second order rectifiable subsets of the boundary of a convex body based on the dimension of the (convex) normal cone. Considering a suitable generalization of this normal cone for general closed subsets of the Euclidean space and employing some results from the first part we can prove that the same stratification exists for every closed set.

Integral Fourier operators
(2017)

This volume of contributions based on lectures delivered at a school on Fourier Integral Operators
held in Ouagadougou, Burkina Faso, 14–26 September 2015, provides an introduction to Fourier Integral Operators (FIO) for a readership of Master and PhD students as well as any interested layperson. Considering the wide
spectrum of their applications and the richness of the mathematical tools they involve, FIOs lie the cross-road of many a field. This volume offers
the necessary background, whether analytic or geometric, to get acquainted with FIOs, complemented by more advanced material presenting various aspects of active research in that area.

The interdisciplinary workshop STOCHASTIC PROCESSES WITH APPLICATIONS IN THE NATURAL SCIENCES was held in Bogotá, at Universidad de los Andes from December 5 to December 9, 2016. It brought together researchers from Colombia, Germany, France, Italy, Ukraine, who communicated recent progress in the mathematical research related to stochastic processes with application in biophysics.
The present volume collects three of the four courses held at this meeting by Angelo Valleriani, Sylvie Rœlly and Alexei Kulik.
A particular aim of this collection is to inspire young scientists in setting up research goals within the wide scope of fields represented in this volume.
Angelo Valleriani, PhD in high energy physics, is group leader of the team "Stochastic processes in complex and biological systems" from the Max-Planck-Institute of Colloids and Interfaces, Potsdam.
Sylvie Rœlly, Docteur en Mathématiques, is the head of the chair of Probability at the University of Potsdam.
Alexei Kulik, Doctor of Sciences, is a Leading researcher at the Institute of Mathematics of Ukrainian National Academy of Sciences.

In this thesis, stochastic dynamics modelling collective motions of populations, one of the most mysterious type of biological phenomena, are considered. For a system of N particle-like individuals, two kinds of asymptotic behaviours are studied : ergodicity and flocking properties, in long time, and propagation of chaos, when the number N of agents goes to infinity. Cucker and Smale, deterministic, mean-field kinetic model for a population without a hierarchical structure is the starting point of our journey : the first two chapters are dedicated to the understanding of various stochastic dynamics it inspires, with random noise added in different ways. The third chapter, an attempt to improve those results, is built upon the cluster expansion method, a technique from statistical mechanics. Exponential ergodicity is obtained for a class of non-Markovian process with non-regular drift. In the final part, the focus shifts onto a stochastic system of interacting particles derived from Keller and Segel 2-D parabolicelliptic model for chemotaxis. Existence and weak uniqueness are proven.

We analyze an inverse noisy regression model under random design with the aim of estimating the unknown target function based on a given set of data, drawn according to some unknown probability distribution. Our estimators are all constructed by kernel methods, which depend on a Reproducing Kernel Hilbert Space structure using spectral regularization methods.
A first main result establishes upper and lower bounds for the rate of convergence under a given source condition assumption, restricting the class of admissible distributions. But since kernel methods scale poorly when massive datasets are involved, we study one example for saving computation time and memory requirements in more detail. We show that Parallelizing spectral algorithms also leads to minimax optimal rates of convergence provided the number of machines is chosen appropriately.
We emphasize that so far all estimators depend on the assumed a-priori smoothness of the target function and on the eigenvalue decay of the kernel covariance operator, which are in general unknown. To obtain good purely data driven estimators constitutes the problem of adaptivity which we handle for the single machine problem via a version of the Lepskii principle.

Raum und Form
(2017)

The classical Navier-Stokes equations of hydrodynamics are usually written in terms of vector analysis. More promising is the formulation of these equations in the language of differential forms of degree one. In this way the study of Navier-Stokes equations includes the analysis of the de Rham complex. In particular, the Hodge theory for the de Rham complex enables one to eliminate the pressure from the equations. The Navier-Stokes equations constitute a parabolic system with a nonlinear term which makes sense only for one-forms. A simpler model of dynamics of incompressible viscous fluid is given by Burgers' equation. This work is aimed at the study of invariant structure of the Navier-Stokes equations which is closely related to the algebraic structure of the de Rham complex at step 1. To this end we introduce Navier-Stokes equations related to any elliptic quasicomplex of first order differential operators. These equations are quite similar to the classical Navier-Stokes equations including generalised velocity and pressure vectors. Elimination of the pressure from the generalised Navier-Stokes equations gives a good motivation for the study of the Neumann problem after Spencer for elliptic quasicomplexes. Such a study is also included in the work.We start this work by discussion of Lamé equations within the context of elliptic quasicomplexes on compact manifolds with boundary. The non-stationary Lamé equations form a hyperbolic system. However, the study of the first mixed problem for them gives a good experience to attack the linearised Navier-Stokes equations. On this base we describe a class of non-linear perturbations of the Navier-Stokes equations, for which the solvability results still hold.

During the drug discovery & development process, several phases encompassing a number of preclinical and clinical studies have to be successfully passed to demonstrate safety and efficacy of a new drug candidate. As part of these studies, the characterization of the drug's pharmacokinetics (PK) is an important aspect, since the PK is assumed to strongly impact safety and efficacy. To this end, drug concentrations are measured repeatedly over time in a study population. The objectives of such studies are to describe the typical PK time-course and the associated variability between subjects. Furthermore, underlying sources significantly contributing to this variability, e.g. the use of comedication, should be identified. The most commonly used statistical framework to analyse repeated measurement data is the nonlinear mixed effect (NLME) approach. At the same time, ample knowledge about the drug's properties already exists and has been accumulating during the discovery & development process: Before any drug is tested in humans, detailed knowledge about the PK in different animal species has to be collected. This drug-specific knowledge and general knowledge about the species' physiology is exploited in mechanistic physiological based PK (PBPK) modeling approaches -it is, however, ignored in the classical NLME modeling approach.
Mechanistic physiological based models aim to incorporate relevant and known physiological processes which contribute to the overlying process of interest. In comparison to data--driven models they are usually more complex from a mathematical perspective. For example, in many situations, the number of model parameters outrange the number of measurements and thus reliable parameter estimation becomes more complex and partly impossible. As a consequence, the integration of powerful mathematical estimation approaches like the NLME modeling approach -which is widely used in data-driven modeling -and the mechanistic modeling approach is not well established; the observed data is rather used as a confirming instead of a model informing and building input.
Another aggravating circumstance of an integrated approach is the inaccessibility to the details of the NLME methodology so that these approaches can be adapted to the specifics and needs of mechanistic modeling. Despite the fact that the NLME modeling approach exists for several decades, details of the mathematical methodology is scattered around a wide range of literature and a comprehensive, rigorous derivation is lacking. Available literature usually only covers selected parts of the mathematical methodology. Sometimes, important steps are not described or are only heuristically motivated, e.g. the iterative algorithm to finally determine the parameter estimates.
Thus, in the present thesis the mathematical methodology of NLME modeling is systemically described and complemented to a comprehensive description,
comprising the common theme from ideas and motivation to the final parameter estimation. Therein, new insights for the interpretation of different approximation methods used in the context of the NLME modeling approach are given and illustrated; furthermore, similarities and differences between them are outlined. Based on these findings, an expectation-maximization (EM) algorithm to determine estimates of a NLME model is described.
Using the EM algorithm and the lumping methodology by Pilari2010, a new approach on how PBPK and NLME modeling can be combined is presented and exemplified for the antibiotic levofloxacin. Therein, the lumping identifies which processes are informed by the available data and the respective model reduction improves the robustness in parameter estimation. Furthermore, it is shown how apriori known factors influencing the variability and apriori known unexplained variability is incorporated to further mechanistically drive the model development. Concludingly, correlation between parameters and between covariates is automatically accounted for due to the mechanistic derivation of the lumping and the covariate relationships.
A useful feature of PBPK models compared to classical data-driven PK models is in the possibility to predict drug concentration within all organs and tissue in the body. Thus, the resulting PBPK model for levofloxacin is used to predict drug concentrations and their variability within soft tissues which are the site of action for levofloxacin. These predictions are compared with data of muscle and adipose tissue obtained by microdialysis, which is an invasive technique to measure a proportion of drug in the tissue, allowing to approximate the concentrations in the interstitial fluid of tissues. Because, so far, comparing human in vivo tissue PK and PBPK predictions are not established, a new conceptual framework is derived. The comparison of PBPK model predictions and microdialysis measurements shows an adequate agreement and reveals further strengths of the presented new approach.
We demonstrated how mechanistic PBPK models, which are usually developed in the early stage of drug development, can be used as basis for model building in the analysis of later stages, i.e. in clinical studies. As a consequence, the extensively collected and accumulated knowledge about species and drug are utilized and updated with specific volunteer or patient data. The NLME approach combined with mechanistic modeling reveals new insights for the mechanistic model, for example identification and quantification of variability in mechanistic processes. This represents a further contribution to the learn & confirm paradigm across different stages of drug development.
Finally, the applicability of mechanism--driven model development is demonstrated on an example from the field of Quantitative Psycholinguistics to analyse repeated eye movement data. Our approach gives new insight into the interpretation of these experiments and the processes behind.

In a bounded domain with smooth boundary in R^3 we consider the stationary Maxwell equations
for a function u with values in R^3 subject to a nonhomogeneous condition
(u,v)_x = u_0 on
the boundary, where v is a given vector field and u_0 a function on the boundary. We specify this problem within the framework of the Riemann-Hilbert boundary value problems for the Moisil-Teodorescu system. This latter is proved to satisfy the Shapiro-Lopaniskij condition if an only if the vector v is at no point tangent to the boundary. The Riemann-Hilbert problem for the Moisil-Teodorescu system fails to possess an adjoint boundary value problem with respect to the Green formula, which satisfies the Shapiro-Lopatinskij condition. We develop the construction of Green formula to get a proper concept of adjoint boundary value problem.

Numerous reports of relatively rapid climate changes over the past century make a clear case of the impact of aerosols and clouds, identified as sources of largest uncertainty in climate projections. Earth’s radiation balance is altered by aerosols depending on their size, morphology and chemical composition. Competing effects in the atmosphere can be further studied by investigating the evolution of aerosol microphysical properties, which are the focus of the present work.
The aerosol size distribution, the refractive index, and the single scattering albedo are commonly used such properties linked to aerosol type, and radiative forcing. Highly advanced lidars (light detection and ranging) have reduced aerosol monitoring and optical profiling into a routine process. Lidar data have been widely used to retrieve the size distribution through the inversion of the so-called Lorenz-Mie model (LMM). This model offers a reasonable treatment for spherically approximated particles, it no longer provides, though, a viable description for other naturally occurring arbitrarily shaped particles, such as dust particles. On the other hand, non-spherical geometries as simple as spheroids reproduce certain optical properties with enhanced accuracy. Motivated by this, we adapt the LMM to accommodate the spheroid-particle approximation introducing the notion of a two-dimensional (2D) shape-size distribution.
Inverting only a few optical data points to retrieve the shape-size distribution is classified as a non-linear ill-posed problem. A brief mathematical analysis is presented which reveals the inherent tendency towards highly oscillatory solutions, explores the available options for a generalized solution through regularization methods and quantifies the ill-posedness. The latter will improve our understanding on the main cause fomenting instability in the produced solution spaces. The new approach facilitates the exploitation of additional lidar data points from depolarization measurements, associated with particle non-sphericity. However, the generalization of LMM vastly increases the complexity of the problem. The underlying theory for the calculation of the involved optical cross sections (T-matrix theory) is computationally so costly, that would limit a retrieval analysis to an unpractical point. Moreover the discretization of the model equation by a 2D collocation method, proposed in this work, involves double integrations which are further time consuming. We overcome these difficulties by using precalculated databases and a sophisticated retrieval software (SphInX: Spheroidal Inversion eXperiments) especially developed for our purposes, capable of performing multiple-dataset inversions and producing a wide range of microphysical retrieval outputs.
Hybrid regularization in conjunction with minimization processes is used as a basis for our algorithms. Synthetic data retrievals are performed simulating various atmospheric scenarios in order to test the efficiency of different regularization methods. The gap in contemporary literature in providing full sets of uncertainties in a wide variety of numerical instances is of major concern here. For this, the most appropriate methods are identified through a thorough analysis on an overall-behavior basis regarding accuracy and stability. The general trend of the initial size distributions is captured in our numerical experiments and the reconstruction quality depends on data error level. Moreover, the need for more or less depolarization points is explored for the first time from the point of view of the microphysical retrieval. Finally, our approach is tested in various measurement cases giving further insight for future algorithm improvements.

This article studies the dynamics of the strong solution of a SDE driven by a discontinuous Levy process taking values in a smooth foliated manifold with compact leaves. It is assumed that it is foliated in the sense that its trajectories stay on the leaf of their initial value for all times almost surely. Under a generic ergodicity assumption for each leaf, we determine the effective behaviour of the system subject to a small smooth perturbation of order epsilon > 0, which acts transversal to the leaves. The main result states that, on average, the transversal component of the perturbed SDE converges uniformly to the solution of a deterministic ODE as e tends to zero. This transversal ODE is generated by the average of the perturbing vector field with respect to the invariant measures of the unperturbed system and varies with the transversal height of the leaves. We give upper bounds for the rates of convergence and illustrate these results for the random rotations on the circle. This article complements the results by Gonzales and Ruffino for SDEs of Stratonovich type to general Levy driven SDEs of Marcus type.

Performance of the generalized shadow hybrid Monte Carlo (GSHMC) method [1], which proved to be superior in sampling efficiency over its predecessors [2-4], molecular dynamics and hybrid Monte Carlo, can be further improved by combining it with multi-time-stepping (MTS) and mollification of slow forces. We demonstrate that the comparatively simple modifications of the method not only lead to better performance of GSHMC itself but also allow for beating the best performed methods, which use the similar force splitting schemes. In addition we show that the same ideas can be successfully applied to the conventional generalized hybrid Monte Carlo method (GHMC). The resulting methods, MTS-GHMC and MTS-GSHMC, provide accurate reproduction of thermodynamic and dynamical properties, exact temperature control during simulation and computational robustness and efficiency. MTS-GHMC uses a generalized momentum update to achieve weak stochastic stabilization to the molecular dynamics (MD) integrator. MTS-GSHMC adds the use of a shadow (modified) Hamiltonian to filter the MD trajectories in the HMC scheme. We introduce a new shadow Hamiltonian formulation adapted to force-splitting methods. The use of such Hamiltonians improves the acceptance rate of trajectories and has a strong impact on the sampling efficiency of the method. Both methods were implemented in the open-source MD package ProtoMol and were tested on a water and a protein systems. Results were compared to those obtained using a Langevin Molly (LM) method [5] on the same systems. The test results demonstrate the superiority of the new methods over LM in terms of stability, accuracy and sampling efficiency. This suggests that putting the MTS approach in the framework of hybrid Monte Carlo and using the natural stochasticity offered by the generalized hybrid Monte Carlo lead to improving stability of MTS and allow for achieving larger step sizes in the simulation of complex systems.

Certain curvature conditions for the stability of Einstein manifolds with respect to the Einstein-Hilbert action are given. These conditions are given in terms of quantities involving the Weyl tensor and the Bochner tensor. In dimension six, a stability criterion involving the Euler characteristic is given.

We study the possibility of obtaining a computational turbulence model by means of non-dissipative regularisation of the compressible atmospheric equations for climate-type applications. We use an -regularisation (Lagrangian averaging) of the atmospheric equations. For the hydrostatic and compressible atmospheric equations discretised using a finite volume method on unstructured grids, deterministic and non-deterministic numerical experiments are conducted to compare the individual solutions and the statistics of the regularised equations to those of the original model. The impact of the regularisation parameter is investigated. Our results confirm the principal compatibility of -regularisation with atmospheric dynamics and encourage further investigations within atmospheric model including complex physical parametrisations.

We find necessary conditions for a second order ordinary differential equation to be equivalent to the Painleve III equation under a general point transformation. Their sufficiency is established by reduction to known results for the equations of the form y ' = f (x, y). We consider separately the generic case and the case of reducibility to an autonomous equation. The results are illustrated by the primary resonance equation.

We study the global theory of linear wave equations for sections of vector bundles over globally hyperbolic Lorentz manifolds. We introduce spaces of finite energy sections and show well-posedness of the Cauchy problem in those spaces. These spaces depend in general on the choice of a time function but it turns out that certain spaces of finite energy solutions are independent of this choice and hence invariantly defined. We also show existence and uniqueness of solutions for the Goursat problem where one prescribes initial data on a characteristic partial Cauchy hypersurface. This extends classical results due to Hormander.

We compute explicitly, and without any extra regularity assumptions, the large time limit of the fibrewise heat operator for Bismut-Lott type superconnections in the L-2-setting. This is motivated by index theory on certain non-compact spaces (families of manifolds with cocompact group action) where the convergence of the heat operator at large time implies refined L-2-index formulas.
As applications, we prove a local L-2-index theorem for families of signature operators and an L-2-Bismut-Lott theorem, expressing the Becker-Gottlieb transfer of flat bundles in terms of Kamber-Tondeur classes. With slightly stronger regularity we obtain the respective refined versions: we construct L-2-eta forms and L-2-torsion forms as transgression forms.

The primary motivation for systematic bases in first principles electronic structure simulations is to derive physical and chemical properties of molecules and solids with predetermined accuracy. This requires a detailed understanding of the asymptotic behaviour of many-particle Coulomb systems near coalescence points of particles. Singular analysis provides a convenient framework to study the asymptotic behaviour of wavefunctions near these singularities. In the present work, we want to introduce the mathematical framework of singular analysis and discuss a novel asymptotic parametrix construction for Hamiltonians of many-particle Coulomb systems. This corresponds to the construction of an approximate inverse of a Hamiltonian operator with remainder given by a so-called Green operator. The Green operator encodes essential asymptotic information and we present as our main result an explicit asymptotic formula for this operator. First applications to many-particle models in quantum chemistry are presented in order to demonstrate the feasibility of our approach. The focus is on the asymptotic behaviour of ladder diagrams, which provide the dominant contribution to short-range correlation in coupled cluster theory. Furthermore, we discuss possible consequences of our asymptotic analysis with respect to adaptive wavelet approximation.

We consider the signal detection problem in the Gaussian design trace regression model with low rank alternative hypotheses. We derive the precise (Ingster-type) detection boundary for the Frobenius and the nuclear norm. We then apply these results to show that honest confidence sets for the unknown matrix parameter that adapt to all low rank sub-models in nuclear norm do not exist. This shows that recently obtained positive results in [5] for confidence sets in low rank recovery problems are essentially optimal.

For an irreducible continuous time Markov chain, we derive the distribution of the first passage time from a given state i to another given state j and the reversed passage time from j to i, each under the condition of no return to the starting point. When these two distributions are identical, we say that i and j are in time duality. We introduce a new condition called permuted balance that generalizes the concept of reversibility and provides sufficient criteria, based on the structure of the transition graph of the Markov chain. Illustrative examples are provided.

Stress drop is a key factor in earthquake mechanics and engineering seismology. However, stress drop calculations based on fault slip can be significantly biased, particularly due to subjectively determined smoothing conditions in the traditional least-square slip inversion. In this study, we introduce a mechanically constrained Bayesian approach to simultaneously invert for fault slip and stress drop based on geodetic measurements. A Gaussian distribution for stress drop is implemented in the inversion as a prior. We have done several synthetic tests to evaluate the stability and reliability of the inversion approach, considering different fault discretization, fault geometries, utilized datasets, and variability of the slip direction, respectively. We finally apply the approach to the 2010 M8.8 Maule earthquake and invert for the coseismic slip and stress drop simultaneously. Two fault geometries from the literature are tested. Our results indicate that the derived slip models based on both fault geometries are similar, showing major slip north of the hypocenter and relatively weak slip in the south, as indicated in the slip models of other studies. The derived mean stress drop is 5-6 MPa, which is close to the stress drop of similar to 7 MPa that was independently determined according to force balance in this region Luttrell et al. (J Geophys Res, 2011). These findings indicate that stress drop values can be consistently extracted from geodetic data.

Green-hyperbolic operators are linear differential operators acting on sections of a vector bundle over a Lorentzian manifold which possess advanced and retarded Green's operators. The most prominent examples are wave operators and Dirac-type operators. This paper is devoted to a systematic study of this class of differential operators. For instance, we show that this class is closed under taking restrictions to suitable subregions of the manifold, under composition, under taking "square roots", and under the direct sum construction. Symmetric hyperbolic systems are studied in detail.

We study infinitesimal Einstein deformations on compact flat manifolds and on product manifolds. Moreover, we prove refinements of results by Koiso and Bourguignon which yield obstructions on the existence of infinitesimal Einstein deformations under certain curvature conditions. (C) 2014 Elsevier B.V. All rights reserved.

Transport molecules play a crucial role for cell viability. Amongst others, linear motors transport cargos along rope-like structures from one location of the cell to another in a stochastic fashion. Thereby each step of the motor, either forwards or backwards, bridges a fixed distance and requires several biochemical transformations, which are modeled as internal states of the motor. While moving along the rope, the motor can also detach and the walk is interrupted. We give here a mathematical formalization of such dynamics as a random process which is an extension of Random Walks, to which we add an absorbing state to model the detachment of the motor from the rope. We derive particular properties of such processes that have not been available before. Our results include description of the maximal distance reached from the starting point and the position from which detachment takes place. Finally, we apply our theoretical results to a concrete established model of the transport molecule Kinesin V.

The regularity of solutions to elliptic equations on a manifold with singularities, say, an edge, can be formulated in terms of asymptotics in the distance variable r > 0 to the singularity. In simplest form such asymptotics turn to a meromorphic behaviour under applying the Mellin transform on the half-axis. Poles, multiplicity, and Laurent coefficients form a system of asymptotic data which depend on the specific operator. Moreover, these data may depend on the variable y along the edge. We then have y-dependent families of meromorphic functions with variable poles, jumping multiplicities and a discontinuous dependence of Laurent coefficients on y. We study here basic phenomena connected with such variable branching asymptotics, formulated in terms of variable continuous asymptotics with a y-wise discrete behaviour.

Asymptotic Solutions of the Dirichlet Problem for the Heat Equation at a Characteristic Point
(2015)

The Dirichlet problem for the heat equation in a bounded domain aS, a"e (n+1) is characteristic because there are boundary points at which the boundary touches a characteristic hyperplane t = c, where c is a constant. For the first time, necessary and sufficient conditions on the boundary guaranteeing that the solution is continuous up to the characteristic point were established by Petrovskii (1934) under the assumption that the Dirichlet data are continuous. The appearance of Petrovskii's paper was stimulated by the existing interest to the investigation of general boundary-value problems for parabolic equations in bounded domains. We contribute to the study of this problem by finding a formal solution of the Dirichlet problem for the heat equation in a neighborhood of a cuspidal characteristic boundary point and analyzing its asymptotic behavior.

The Net Reclassification Improvement (NRI) has become a popular metric for evaluating improvement in disease prediction models through the past years. The concept is relatively straightforward but usage and interpretation has been different across studies. While no thresholds exist for evaluating the degree of improvement, many studies have relied solely on the significance of the NRI estimate. However, recent studies recommend that statistical testing with the NRI should be avoided. We propose using confidence ellipses around the estimated values of event and non-event NRIs which might provide the best measure of variability around the point estimates. Our developments are illustrated using practical examples from EPIC-Potsdam study.

We consider the volume- normalized Ricci flow close to compact shrinking Ricci solitons. We show that if a compact Ricci soliton (M, g) is a local maximum of Perelman's shrinker entropy, any normalized Ricci flowstarting close to it exists for all time and converges towards a Ricci soliton. If g is not a local maximum of the shrinker entropy, we showthat there exists a nontrivial normalized Ricci flow emerging from it. These theorems are analogues of results in the Ricci- flat and in the Einstein case (Haslhofer and Muller, arXiv:1301.3219, 2013; Kroncke, arXiv: 1312.2224, 2013).

Context. The theoretically studied impact of rapid rotation on stellar evolution needs to be compared with these results of high-resolution spectroscopy-velocimetry observations. Early-type stars present a perfect laboratory for these studies. The prototype A0 star Vega has been extensively monitored in recent years in spectropolarimetry. A weak surface magnetic field was detected, implying that there might be a (still undetected) structured surface. First indications of the presence of small amplitude stellar radial velocity variations have been reported recently, but the confirmation and in-depth study with the highly stabilized spectrograph SOPHIE/OHP was required.
Aims. The goal of this article is to present a thorough analysis of the line profile variations and associated estimators in the early-type standard star Vega (A0) in order to reveal potential activity tracers, exoplanet companions, and stellar oscillations.
Methods. Vega was monitored in quasi-continuous high-resolution echelle spectroscopy with the highly stabilized velocimeter SOPHIE/OHP. A total of 2588 high signal-to-noise spectra was obtained during 34.7 h on five nights (2 to 6 of August 2012) in high-resolution mode at R = 75 000 and covering the visible domain from 3895 6270 angstrom. For each reduced spectrum, least square deconvolved equivalent photospheric profiles were calculated with a T-eff = 9500 and log g = 4.0 spectral line mask. Several methods were applied to study the dynamic behaviour of the profile variations (evolution of radial velocity, bisectors, vspan, 2D profiles, amongst others).
Results. We present the discovery of a spotted stellar surface on an A-type standard star (Vega) with very faint spot amplitudes Delta F/Fc similar to 5 x 10(-4). A rotational modulation of spectral lines with a period of rotation P = 0.68 d has clearly been exhibited, unambiguously confirming the results of previous spectropolarimetric studies. Most of these brightness inhomogeneities seem to be located in lower equatorial latitudes. Either a very thin convective layer can be responsible for magnetic field generation at small amplitudes, or a new mechanism has to be invoked to explain the existence of activity tracing starspots. At this stage it is difficult to disentangle a rotational from a stellar pulsational origin for the existing higher frequency periodic variations.
Conclusions. This first strong evidence that standard A-type stars can show surface structures opens a new field of research and ask about a potential link with the recently discovered weak magnetic field discoveries in this category of stars.

We introduce the notion of coupling distances on the space of Levy measures in order to quantify rates of convergence towards a limiting Levy jump diffusion in terms of its characteristic triplet, in particular in terms of the tail of the Levy measure. The main result yields an estimate of the Wasserstein-Kantorovich-Rubinstein distance on path space between two Levy diffusions in terms of the coupling distances. We want to apply this to obtain precise rates of convergence for Markov chain approximations and a statistical goodness-of-fit test for low-dimensional conceptual climate models with paleoclimatic data.

Boundary value problems on a manifold with smooth boundary are closely related to the edge calculus where the boundary plays the role of an edge. The problem of expressing parametrices of Shapiro-Lopatinskij elliptic boundary value problems for differential operators gives rise to pseudo-differential operators with the transmission property at the boundary. However, there are interesting pseudo-differential operators without the transmission property, for instance, the Dirichlet-to-Neumann operator. In this case the symbols become edge-degenerate under a suitable quantisation, cf. Chang et al. (J Pseudo-Differ Oper Appl 5(2014):69-155, 2014). If the boundary itself has singularities, e.g., conical points or edges, then the symbols are corner-degenerate. In the present paper we study elements of the corresponding corner pseudo-differential calculus.

In this study, we analyze acoustic emission (AE) data recorded at the Morsleben salt mine, Germany, to assess the catalog completeness, which plays an important role in any seismicity analysis. We introduce the new concept of a magnitude completeness interval consisting of a maximum magnitude of completeness (M-c(max)) in addition to the well-known minimum magnitude of completeness. This is required to describe the completeness of the catalog, both for the smallest events (for which the detection performance may be low) and for the largest ones (which may be missed because of sensors saturation). We suggest a method to compute the maximum magnitude of completeness and calculate it for a spatial grid based on (1) the prior estimation of saturation magnitude at each sensor, (2) the correction of the detection probability function at each sensor, including a drop in the detection performance when it saturates, and (3) the combination of detection probabilities of all sensors to obtain the network detection performance. The method is tested using about 130,000 AE events recorded in a period of five weeks, with sources confined within a small depth interval, and an example of the spatial distribution of M-c(max) is derived. The comparison between the spatial distribution of M-c(max) and of the maximum possible magnitude (M-max), which is here derived using a recently introduced Bayesian approach, indicates that M-max exceeds M-c(max) in some parts of the mine. This suggests that some large and important events may be missed in the catalog, which could lead to a bias in the hazard evaluation.

A Riemannian manifold is called geometrically formal if the wedge product of any two harmonic forms is again harmonic. We classify geometrically formal compact 4-manifolds with nonnegative sectional curvature. If the sectional curvature is strictly positive, the manifold must be homeomorphic to S-4 or diffeomorphic to CP2.
This conclusion stills holds true if the sectional curvature is strictly positive and we relax the condition of geometric formality to the requirement that the length of harmonic 2-forms is not too nonconstant. In particular, the Hopf conjecture on S-2 x S-2 holds in this class of manifolds.

In this paper a technique to obtain a first approximation for singular inverse Sturm-Liouville problems with a symmetrical potential is introduced. The singularity, as a result of unbounded domain (-infinity, infinity), is treated by considering numerically the asymptotic limit of the associated problem on a finite interval (-L, L). In spite of this treatment, the problem has still an ill-conditioned structure unlike the classical regular ones and needs regularization techniques. Direct computation of eigenvalues in iterative solution procedure is made by means of pseudospectral methods. A fairly detailed description of the numerical algorithm and its applications to specific examples are presented to illustrate the accuracy and convergence behaviour of the proposed approach.

Metastability in a class of hyperbolic dynamical systems perturbed by heavy-tailed Levy type noise
(2015)

We consider a finite dimensional deterministic dynamical system with finitely many local attractors K-iota, each of which supports a unique ergodic probability measure P-iota, perturbed by a multiplicative non-Gaussian heavy-tailed Levy noise of small intensity epsilon > 0. We show that the random system exhibits a metastable behavior: there exists a unique epsilon-dependent time scale on which the system reminds of a continuous time Markov chain on the set of the invariant measures P-iota. In particular our approach covers the case of dynamical systems of Morse-Smale type, whose attractors consist of points and limit cycles, perturbed by multiplicative alpha-stable Levy noise in the Ito, Stratonovich and Marcus sense. As examples we consider alpha-stable Levy perturbations of the Duffing equation and Pareto perturbations of a biochemical birhythmic system with two nested limit cycles.

Boundary value problems on a smooth manifold X with boundary have the structure of edge problems. Operators A are described in terms of a principal symbolic hierarchy, namely, according to the stratification of X, with the interior and the boundary We focus here on operators with and without the transmission property and establish a new relationship between boundary symbols and operators in the cone calculus transversal to the boundary.

By edge algebra we understand a pseudo-differential calculus on a manifold with edge. The operators have a two-component principal symbolic hierarchy which determines operators up to lower order terms. Those belong to a filtration of the corresponding operator spaces. We give a new characterisation of this structure, based on an alternative representation of edge amplitude functions only containing holomorphic edge-degenerate Mellin symbols.

We consider the semiclassical asymptotic expansion of the heat kernel coming from Witten's perturbation of the de Rham complex by a given function. For the index, one obtains a time-dependent integral formula which is evaluated by the method of stationary phase to derive the Poincare-Hopf theorem. We show how this method is related to approaches using the Thom form of Mathai and Quillen. Afterwards, we use a more general version of the stationary phase approximation in the case that the perturbing function has critical submanifolds to derive a degenerate version of the Poincare-Hopf theorem.

We study systematically the estimation of Earth's core angular momentum (CAM) variation between 1962.0 and 2008.0 by using core surface flow models derived from the recent geomagnetic field model C(3)FM2. Various flow models are derived by changing four parameters that control the least squares flow inversion. The parameters include the spherical harmonic (SH) truncation degree of the flow models and two Lagrange multipliers that control the weights of two additional constraints. The first constraint forces the energy spectrum of the flow solution to follow a power law l-p, where l is the SH degree and p is the fourth parameter. The second allows to modulate the solution continuously between the dynamical states of tangential geostrophy (TG) and tangential magnetostrophy (TM). The calculated CAM variations are examined in reference to two features of the observed length-of-day (LOD) variation, namely, its secular trend and 6year oscillation. We find flow models in either TG or TM state for which the estimated CAM trends agree with the LOD trend. It is necessary for TM models to have their flows dominate at planetary scales, whereas TG models should not be of this scale; otherwise, their CAM trends are too steep. These two distinct types of flow model appear to correspond to the separate regimes of previous numerical dynamos that are thought to be applicable to the Earth's core. The phase of the subdecadal CAM variation is coherently determined from flow models obtained with extensively varying inversion settings. Multiple sources of model ambiguity need to be allowed for in discussing whether these phase estimates properly represent that of Earth's CAM as an origin of the observed 6year LOD oscillation.

In this work we extract the microphysical properties of aerosols for a collection of measurement cases with low volume depolarization ratio originating from fire sources captured by the Raman lidar located at the National Institute of Optoelectronics (INOE) in Bucharest. Our algorithm was tested not only for pure smoke but also for mixed smoke and urban aerosols of variable age and growth. Applying a sensitivity analysis on initial parameter settings of our retrieval code was proved vital for producing semi-automatized retrievals with a hybrid regularization method developed at the Institute of Mathematics of Potsdam University. A direct quantitative comparison of the retrieved microphysical properties with measurements from a Compact Time of Flight Aerosol Mass Spectrometer (CToF-AMS) is used to validate our algorithm. Microphysical retrievals performed with sun photometer data are also used to explore our results. Focusing on the fine mode we observed remarkable similarities between the retrieved size distribution and the one measured by the AMS. More complicated atmospheric structures and the factor of absorption appear to depend more on particle radius being subject to variation. A good correlation was found between the aerosol effective radius and particle age, using the ratio of lidar ratios (LR: aerosol extinction to backscatter ratios) as an indicator for the latter. Finally, the dependence on relative humidity of aerosol effective radii measured on the ground and within the layers aloft show similar patterns. (C) 2015 Elsevier Inc. All rights reserved.

We present simulations of binary black-hole mergers in which, after the common outer horizon has formed, the marginally outer trapped surfaces (MOTSs) corresponding to the individual black holes continue to approach and eventually penetrate each other. This has very interesting consequences according to recent results in the theory of MOTSs. Uniqueness and stability theorems imply that two MOTSs which touch with a common outer normal must be identical. This suggests a possible dramatic consequence of the collision between a small and large black hole. If the penetration were to continue to completion, then the two MOTSs would have to coalesce, by some combination of the small one growing and the big one shrinking. Here we explore the relationship between theory and numerical simulations, in which a small black hole has halfway penetrated a large one.

We investigate nonlinear problems which appear as Euler-Lagrange equations for a variational problem. They include in particular variational boundary value problems for nonlinear elliptic equations studied by F. Browder in the 1960s. We establish a solvability criterion of such problems and elaborate an efficient orthogonal projection method for constructing approximate solutions.

In quantum mechanics the temporal decay of certain resonance states is associated with an effective time evolution e(-ith(kappa)), where h(.) is an analytic family of non-self-adjoint matrices. In general the corresponding resonance states do not decay exponentially in time. Using analytic perturbation theory, we derive asymptotic expansions for e(-ith(kappa)), simultaneously in the limits kappa -> 0 and t -> infinity, where the corrections with respect to pure exponential decay have uniform bounds in one complex variable kappa(2)t.
In the Appendix we briefly review analytic perturbation theory, replacing the classical reference to the 1920 book of Knopp [Funktionentheorie II, Anwendungen und Weiterfuhrung der allgemeinen Theorie, Sammlung Goschen, Vereinigung wissenschaftlicher Verleger Walter de Gruyter, 1920] and its terminology by standard modern references. This might be of independent interest.

We consider infinite-dimensional diffusions where the interaction between the coordinates has a finite extent both in space and time. In particular, it is not supposed to be smooth or Markov. The initial state of the system is Gibbs, given by a strong summable interaction. If the strongness of this initial interaction is lower than a suitable level, and if the dynamical interaction is bounded from above in a right way, we prove that the law of the diffusion at any time t is a Gibbs measure with absolutely summable interaction. The main tool is a cluster expansion in space uniformly in time of the Girsanov factor coming from the dynamics and exponential ergodicity of the free dynamics to an equilibrium product measure.

We study two notions of relative differential cohomology, using the model of differential characters. The two notions arise from the two options to construct relative homology, either by cycles of a quotient complex or of a mapping cone complex. We discuss the relation of the two notions of relative differential cohomology to each other. We discuss long exact sequences for both notions, thereby clarifying their relation to absolute differential cohomology. We construct the external and internal product of relative and absolute characters and show that relative differential cohomology is a right module over the absolute differential cohomology ring. Finally we construct fiber integration and transgression for relative differential characters.

We study Cheeger-Simons differential characters and provide geometric descriptions of the ring structure and of the fiber integration map. The uniqueness of differential cohomology (up to unique natural transformation) is proved by deriving an explicit formula for any natural transformation between a differential cohomology theory and the model given by differential characters. Fiber integration for fibers with boundary is treated in the context of relative differential characters. As applications we treat higher-dimensional holonomy, parallel transport, and transgression.

We consider a finite-dimensional deterministic dynamical system with the global attractor ? which supports a unique ergodic probability measure P. The measure P can be considered as the uniform long-term mean of the trajectories staying in a bounded domain D containing ?. We perturb the dynamical system by a multiplicative heavy tailed Levy noise of small intensity E>0 and solve the asymptotic first exit time and location problem from D in the limit of E?0. In contrast to the case of Gaussian perturbations, the exit time has an algebraic exit rate as a function of E, just as in the case when ? is a stable fixed point studied earlier in [9, 14, 19, 26]. As an example, we study the first exit problem from a neighborhood of the stable limit cycle for the Van der Pol oscillator perturbed by multiplicative -stable Levy noise.

The Runge-Kutta type regularization method was recently proposed as a potent tool for the iterative solution of nonlinear ill-posed problems. In this paper we analyze the applicability of this regularization method for solving inverse problems arising in atmospheric remote sensing, particularly for the retrieval of spheroidal particle distribution. Our numerical simulations reveal that the Runge-Kutta type regularization method is able to retrieve two-dimensional particle distributions using optical backscatter and extinction coefficient profiles, as well as depolarization information.

In this paper a linear-time algorithm for the minimization of acyclic deterministic finite-state automata is presented. The algorithm runs significantly faster than previous algorithms for the same task. This is shown by a comparison of the running times of both algorithms. Additionally, a variation of the new algorithm is presented which handles cyclic automata as input. The new cycle-aware algorithm minimizes acyclic automata in the desired way. In case of cyclic input, the algorithm minimizes all acyclic suffixes of the input automaton.

We consider statistical hypothesis testing simultaneously over a fairly general, possibly uncountably infinite, set of null hypotheses, under the assumption that a suitable single test (and corresponding p-value) is known for each individual hypothesis. We extend to this setting the notion of false discovery rate (FDR) as a measure of type I error. Our main result studies specific procedures based on the observation of the p-value process. Control of the FDR at a nominal level is ensured either under arbitrary dependence of p-values, or under the assumption that the finite dimensional distributions of the p-value process have positive correlations of a specific type (weak PRDS). Both cases generalize existing results established in the finite setting. Its interest is demonstrated in several non-parametric examples: testing the mean/signal in a Gaussian white noise model, testing the intensity of a Poisson process and testing the c.d.f. of i.i.d. random variables.

We introduce the concept of a conical zeta value as a geometric generalization of a multiple zeta value in the context of convex cones. The quasi-shuffle and shuffle relations of multiple zeta values are generalized to open cone subdivision and closed cone subdivision relations respectively for conical zeta values. In order to achieve the closed cone subdivision relation, we also interpret linear relations among fractions as subdivisions of decorated closed cones. As a generalization of the double shuffle relation of multiple zeta values, we give the double subdivision relation of conical zeta values and formulate the extended double subdivision relation conjecture for conical zeta values.

Let M be a closed connected spin manifold of dimension 2 or 3 with a fixed orientation and a fixed spin structure. We prove that for a generic Riemannian metric on M the non-harmonic eigenspinors of the Dirac operator are nowhere zero. The proof is based on a transversality theorem and the unique continuation property of the Dirac operator.

We study mixed boundary value problems, here mainly of Zaremba type for the Laplacian within an edge algebra of boundary value problems. The edge here is the interface of the jump from the Dirichlet to the Neumann condition. In contrast to earlier descriptions of mixed problems within such an edge calculus, cf. (Harutjunjan and Schulze, Elliptic mixed, transmission and singular crack problems, 2008), we focus on new Mellin edge quantisations of the Dirichlet-to-Neumann operator on the Neumann side of the boundary and employ a pseudo-differential calculus of corresponding boundary value problems without the transmission property at the interface. This allows us to construct parametrices for the original mixed problem in a new and transparent way.

We establish a quantisation of corner-degenerate symbols, here called Mellin-edge quantisation, on a manifold with second order singularities. The typical ingredients come from the "most singular" stratum of which is a second order edge where the infinite transversal cone has a base that is itself a manifold with smooth edge. The resulting operator-valued amplitude functions on the second order edge are formulated purely in terms of Mellin symbols taking values in the edge algebra over . In this respect our result is formally analogous to a quantisation rule of (Osaka J. Math. 37:221-260, 2000) for the simpler case of edge-degenerate symbols that corresponds to the singularity order 1. However, from the singularity order 2 on there appear new substantial difficulties for the first time, partly caused by the edge singularities of the cone over that tend to infinity.

In a recent paper, the Lefschetz number for endomorphisms (modulo trace class operators) of sequences of trace class curvature was introduced. We show that this is a well defined, canonical extension of the classical Lefschetz number and establish the homotopy invariance of this number. Moreover, we apply the results to show that the Lefschetz fixed point formula holds for geometric quasiendomorphisms of elliptic quasicomplexes.

Two recent works have adapted the Kalman-Bucy filter into an ensemble setting. In the first formulation, the ensemble of perturbations is updated by the solution of an ordinary differential equation (ODE) in pseudo-time, while the mean is updated as in the standard Kalman filter. In the second formulation, the full ensemble is updated in the analysis step as the solution of single set of ODEs in pseudo-time. Neither requires matrix inversions except for the frequently diagonal observation error covariance.
We analyse the behaviour of the ODEs involved in these formulations. We demonstrate that they stiffen for large magnitudes of the ratio of background error to observational error variance, and that using the integration scheme proposed in both formulations can lead to failure. A numerical integration scheme that is both stable and is not computationally expensive is proposed. We develop transform-based alternatives for these Bucy-type approaches so that the integrations are computed in ensemble space where the variables are weights (of dimension equal to the ensemble size) rather than model variables.
Finally, the performance of our ensemble transform Kalman-Bucy implementations is evaluated using three models: the 3-variable Lorenz 1963 model, the 40-variable Lorenz 1996 model, and a medium complexity atmospheric general circulation model known as SPEEDY. The results from all three models are encouraging and warrant further exploration of these assimilation techniques.

The inverse problem of determining the flow at the Earth's core-mantle boundary according to an outer core magnetic field and secular variation model has been investigated through a Bayesian formalism. To circumvent the issue arising from the truncated nature of the available fields, we combined two modeling methods. In the first step, we applied a filter on the magnetic field to isolate its large scales by reducing the energy contained in its small scales, we then derived the dynamical equation, referred as filtered frozen flux equation, describing the spatiotemporal evolution of the filtered part of the field. In the second step, we proposed a statistical parametrization of the filtered magnetic field in order to account for both its remaining unresolved scales and its large-scale uncertainties. These two modeling techniques were then included in the Bayesian formulation of the inverse problem. To explore the complex posterior distribution of the velocity field resulting from this development, we numerically implemented an algorithm based on Markov chain Monte Carlo methods. After evaluating our approach on synthetic data and comparing it to previously introduced methods, we applied it to a magnetic field model derived from satellite data for the single epoch 2005.0. We could confirm the existence of specific features already observed in previous studies. In particular, we retrieved the planetary scale eccentric gyre characteristic of flow evaluated under the compressible quasi-geostrophy assumption although this hypothesis was not considered in our study. In addition, through the sampling of the velocity field posterior distribution, we could evaluate the reliability, at any spatial location and at any scale, of the flow we calculated. The flow uncertainties we determined are nevertheless conditioned by the choice of the prior constraints we applied to the velocity field.

We discuss the solution theory of operators of the form del(x) + A, acting on smooth sections of a vector bundle with connection del over a manifold M, where X is a vector field having a critical point with positive linearization at some point p is an element of M. As an operator on a suitable space of smooth sections Gamma(infinity)(U, nu), it fulfills a Fredholm alternative, and the same is true for the adjoint operator. Furthermore, we show that the solutions depend smoothly on the data del, X and A.

We describe an iterative method to combine seismicity forecasts. With this method, we produce the next generation of a starting forecast by incorporating predictive skill from one or more input forecasts. For a single iteration, we use the differential probability gain of an input forecast relative to the starting forecast. At each point in space and time, the rate in the next-generation forecast is the product of the starting rate and the local differential probability gain. The main advantage of this method is that it can produce high forecast rates using all types of numerical forecast models, even those that are not rate-based. Naturally, a limitation of this method is that the input forecast must have some information not already contained in the starting forecast. We illustrate this method using the Every Earthquake a Precursor According to Scale (EEPAS) and Early Aftershocks Statistics (EAST) models, which are currently being evaluated at the US testing center of the Collaboratory for the Study of Earthquake Predictability. During a testing period from July 2009 to December 2011 (with 19 target earthquakes), the combined model we produce has better predictive performance - in terms of Molchan diagrams and likelihood - than the starting model (EEPAS) and the input model (EAST). Many of the target earthquakes occur in regions where the combined model has high forecast rates. Most importantly, the rates in these regions are substantially higher than if we had simply averaged the models.

The subject of this paper is solutions of an autoresonance equation. We look for a connection between the parameters of the solution bounded as t -> -infinity, and the parameters of two two-parameter families of solutions as t -> infinity. One family consists of the solutions which are not captured into resonance, and another of those increasing solutions which are captured into resonance. In this way we describe the transition through the separatrix for equations with slowly varying parameters and get an estimate for parameters before the resonance of those solutions which may be captured into autoresonance. (C) 2014 AIP Publishing LLC.