### Refine

#### Year of publication

- 2016 (5) (remove)

#### Document Type

- Preprint (5) (remove)

#### Keywords

- Clifford algebra (1)
- Dirac operator (1)
- Fredholm operator (1)
- Fredholm property (1)
- Hodge theory (1)
- Navier-Stokes equations (1)
- Neumann problem (1)
- Riemann-Hilbert problem (1)
- division of spaces (1)
- elliptic complex (1)
- elliptic complexes (1)
- index (1)
- integral representation method (1)
- lattice packing and covering (1)
- manifold with boundary (1)
- polyhedra and polytopes (1)
- regular figures (1)
- weighted Hölder spaces (1)

We consider the Navier-Stokes equations in the layer R^n x [0,T] over R^n with finite T > 0. Using the standard fundamental solutions of the Laplace operator and the heat operator, we reduce the Navier-Stokes equations to a nonlinear Fredholm equation of the form (I+K) u = f, where K is a compact continuous operator in anisotropic normed Hölder spaces weighted at the point at infinity with respect to the space variables. Actually, the weight function is included to provide a finite energy estimate for solutions to the Navier-Stokes equations for all t in [0,T]. On using the particular properties of the de Rham complex we conclude that the Fréchet derivative (I+K)' is continuously invertible at each point of the Banach space under consideration and the map I+K is open and injective in the space. In this way the Navier-Stokes equations prove to induce an open one-to-one mapping in the scale of Hölder spaces.

When trying to extend the Hodge theory for elliptic complexes on compact closed manifolds to the case of compact manifolds with boundary one is led to a boundary value problem for
the Laplacian of the complex which is usually referred to as Neumann problem. We study the Neumann problem for a larger class of sequences of differential operators on
a compact manifold with boundary. These are sequences of small curvature, i.e., bearing the property that the composition of any two neighbouring operators has order less than two.

The aim of this paper is to bring together two areas which are of great importance for the study of overdetermined boundary value problems. The first area is homological algebra which is the main tool in constructing the formal theory of overdetermined problems. And the second area is the global calculus of pseudodifferential operators which allows one to develop explicit analysis.

We elaborate a boundary Fourier method for studying an analogue of the Hilbert problem for analytic functions within the framework of generalised Cauchy-Riemann equations. The boundary value problem need not satisfy the Shapiro-Lopatinskij condition and so it fails to be Fredholm in Sobolev spaces. We show a solvability condition of the Hilbert problem, which looks like those for ill-posed
problems, and construct an explicit formula for approximate solutions.