### Refine

#### Has Fulltext

- yes (462) (remove)

#### Year of publication

#### Document Type

- Preprint (374)
- Doctoral Thesis (43)
- Postprint (24)
- Article (11)
- Monograph/Edited Volume (6)
- Conference Proceeding (2)
- Master's Thesis (2)

#### Language

- English (428)
- German (30)
- French (3)
- Multiple languages (1)

#### Keywords

- index (11)
- boundary value problems (10)
- elliptic operators (9)
- Fredholm property (8)
- cluster expansion (8)
- K-theory (7)
- manifolds with singularities (7)
- pseudodifferential operators (7)
- relative index (6)
- Atiyah-Patodi-Singer theory (5)

#### Institute

- Institut für Mathematik (462) (remove)

Geometric electroelasticity
(2014)

In this work a diffential geometric formulation of the theory of electroelasticity is developed which also includes thermal and magnetic influences. We study the motion of bodies consisting of an elastic material that are deformed by the influence of mechanical forces, heat and an external electromagnetic field. To this end physical balance laws (conservation of mass, balance of momentum, angular momentum and energy) are established. These provide an equation that describes the motion of the body during the deformation. Here the body and the surrounding space are modeled as Riemannian manifolds, and we allow that the body has a lower dimension than the surrounding space. In this way one is not (as usual) restricted to the description of the deformation of three-dimensional bodies in a three-dimensional space, but one can also describe the deformation of membranes and the deformation in a curved space. Moreover, we formulate so-called constitutive relations that encode the properties of the used material. Balance of energy as a scalar law can easily be formulated on a Riemannian manifold. The remaining balance laws are then obtained by demanding that balance of energy is invariant under the action of arbitrary diffeomorphisms on the surrounding space. This generalizes a result by Marsden and Hughes that pertains to bodies that have the same dimension as the surrounding space and does not allow the presence of electromagnetic fields. Usually, in works on electroelasticity the entropy inequality is used to decide which otherwise allowed deformations are physically admissible and which are not. It is alsoemployed to derive restrictions to the possible forms of constitutive relations describing the material. Unfortunately, the opinions on the physically correct statement of the entropy inequality diverge when electromagnetic fields are present. Moreover, it is unclear how to formulate the entropy inequality in the case of a membrane that is subjected to an electromagnetic field. Thus, we show that one can replace the use of the entropy inequality by the demand that for a given process balance of energy is invariant under the action of arbitrary diffeomorphisms on the surrounding space and under linear rescalings of the temperature. On the one hand, this demand also yields the desired restrictions to the form of the constitutive relations. On the other hand, it needs much weaker assumptions than the arguments in physics literature that are employing the entropy inequality. Again, our result generalizes a theorem of Marsden and Hughes. This time, our result is, like theirs, only valid for bodies that have the same dimension as the surrounding space.

A doppelalgebra is an algebra defined on a vector space with two binary linear associative operations. Doppelalgebras play a prominent role in algebraic K-theory. We consider doppelsemigroups, that is, sets with two binary associative operations satisfying the axioms of a doppelalgebra. Doppelsemigroups are a generalization of semigroups and they have relationships with such algebraic structures as interassociative semigroups, restrictive bisemigroups, dimonoids, and trioids.
In the lecture notes numerous examples of doppelsemigroups and of strong doppelsemigroups are given. The independence of axioms of a strong doppelsemigroup is established. A free product in the variety of doppelsemigroups is presented. We also construct a free (strong) doppelsemigroup, a free commutative (strong) doppelsemigroup, a free n-nilpotent (strong) doppelsemigroup, a free n-dinilpotent (strong) doppelsemigroup, and a free left n-dinilpotent doppelsemigroup. Moreover, the least commutative congruence, the least n-nilpotent congruence, the least n-dinilpotent congruence on a free (strong) doppelsemigroup and the least left n-dinilpotent congruence on a free doppelsemigroup are characterized.
The book addresses graduate students, post-graduate students, researchers in algebra and interested readers.

The aim of these lectures is a reformulation and generalization of the fundamental investigations of Alexander Bach [2, 3] on the concept of probability in the work of Boltzmann [6] in the language of modern point process theory. The dominating point of view here is its subordination under the disintegration theory of Krickeberg [14]. This enables us to make Bach's consideration much more transparent. Moreover the point process formulation turns out to be the natural framework for the applications to quantum mechanical models.

Aus dem Inhalt: 1 Abraham Wald (1902-1950) 2 Einführung der Grundbegriffe. Einige technische bekannte Ergebnisse 2.1 Martingal und Doob-Ungleichung 2.2 Brownsche Bewegung und spezielle Martingale 2.3 Gleichgradige Integrierbarkeit von Prozessen 2.4 Gestopptes Martingal 2.5 Optionaler Stoppsatz von Doob 2.6 Lokales Martingal 2.7 Quadratische Variation 2.8 Die Dichte der ersten einseitigen Überschreitungszeit der Brown- schen Bewegung 2.9 Waldidentitäten für die Überschreitungszeiten der Brownschen Bewegung 3 Erste Waldidentität 3.1 Burkholder, Gundy und Davis Ungleichungen der gestoppten Brown- schen Bewegung 3.2 Erste Waldidentität für die Brownsche Bewegung 3.3 Verfeinerungen der ersten Waldidentität 3.4 Stärkere Verfeinerung der ersten Waldidentität für die Brown- schen Bewegung 3.5 Verfeinerung der ersten Waldidentität für spezielle Stoppzeiten der Brownschen Bewegung 3.6 Beispiele für lokale Martingale für die Verfeinerung der ersten Waldidentität 3.7 Überschreitungszeiten der Brownschen Bewegung für nichtlineare Schranken 4 Zweite Waldidentität 4.1 Zweite Waldidentität für die Brownsche Bewegung 4.2 Anwendungen der ersten und zweitenWaldidentität für die Brown- schen Bewegung 5 Dritte Waldidentität 5.1 Dritte Waldidentität für die Brownsche Bewegung 5.2 Verfeinerung der dritten Waldidentität 5.3 Eine wichtige Voraussetzung für die Verfeinerung der drittenWal- didentität 5.4 Verfeinerung der dritten Waldidentität für spezielle Stoppzeiten der Brownschen Bewegung 6 Waldidentitäten im Mehrdimensionalen 6.1 Erste Waldidentität im Mehrdimensionalen 6.2 Zweite Waldidentität im Mehrdimensionalen 6.3 Dritte Waldidentität im Mehrdimensionalen 7 Appendix

In this paper, we discuss the global existence of solutions for Chemotaxis models with saturation growth. If the coe±cients of the equations are all positive smooth T-periodic functions, then the problem has a positive T-periodic solution, and meanwhile we discuss here the stability problems for the T-periodic solutions.

In this paper, the problem on formation and construction of a shock wave for three dimensional compressible Euler equations with the small perturbed spherical initial data is studied. If the given smooth initial data satisfies certain nondegenerate condition, then from the results in [20], we know that there exists a unique blowup point at the blowup time such that the first order derivates of smooth solution blow up meanwhile the solution itself is still continuous at the blowup point. From the blowup point, we construct a weak entropy solution which is not uniformly Lipschitz continuous on two sides of shock curve, moreover the strength of the constructed shock is zero at the blowup point and then gradually increases. Additionally, some detailed and precise estimates on the solution are obtained in the neighbourhood of the blowup point.

This note is devoted to the study on the global existence of a shock wave for the supersonic flow past a curved wedge. When the curved wedge is a small perturbation of a straight wedge and the angle of the wedge is less than some critical value, wwe show that a shock attached at the wedge will exist globally.

In this article we construct the fundamental solutions for the wave equation arising in the de Sitter model of the universe. We use the fundamental solutions to represent solutions of the Cauchy problem and to prove the Lp − Lq-decay estimates for the solutions of the equation with and without a source term.

Contents: 1 Introduction 2 Main result 3 Construction of the asymptotic solutions 3.1 Derivation of the equations for the profiles 3.2 Exsistence of the principal profile 3.3 Determination of Usub(2) and the remaining profiles 4 Stability of the samll global solutions. Justification of One Phase Nonlinear Geometric Optics for the Kirchhoff-type equations 4.1 Stability of the global solutions to the Kirchhoff-type symmetric hyperbolic systems 4.2 The nonlinear system of ordinary differential equations with the parameter 4.3 Some energies estimates 4.4 The dependence of the solution W(t, ξ) on the function s(t) 4.5 The oscillatory integrals of the bilinear forms of the solutions 4.6 Estimates for the basic bilinear form Γsub(s)(t) 4.7 Contraction mapping 4.8 Stability of the global solution 4.9 Justification of One Phase Nonlinear Geometric Optics for the Kirchhoff-type equations

It is shown that bounded solutions to semilinear elliptic Fuchsian equations obey complete asymptoic expansions in terms of powers and logarithms in the distance to the boundary. For that purpose, Schuze's notion of asymptotic type for conormal asymptotics close to a conical point is refined. This in turn allows to perform explicit calculations on asymptotic types - modulo the resolution of the spectral problem for determining the singular exponents in the asmptotic expansions.

Edge representations of operators on closed manifolds are known to induce large classes of operators that are elliptic on specific manifolds with edges, cf. [9]. We apply this idea to the case of boundary value problems. We establish a correspondence between standard ellipticity and ellipticity with respect to the principal symbolic hierarchy of the edge algebra of boundary value problems, where an embedded submanifold on the boundary plays the role of an edge. We first consider the case that the weight is equal to the smoothness and calculate the dimensions of kernels and cokernels of the associated principal edge symbols. Then we pass to elliptic edge operators for arbitrary weights and construct the additional edge conditions by applying relative index results for conormal symbols.

Asymptotic algebras
(2001)

Green formulae for elliptic cone differential operators are established. This is achieved by an accurate description of the maximal domain of an elliptic cone differential operator and its formal adjoint; thereby utilizing the concept of a discrete asymptotic type. From this description, the singular coefficients replacing the boundary traces in classical Green formulas are deduced.

Local asymptotic types
(2002)

It is prooved that mermorphic, parameter-dependet elliptic Mellin symbols can be factorized in a particular way. The proof depends on the availability of logarithms of pseudodifferential operators. As a byproduct, we obtain a characterization of the group generated by pseudodifferential operators admitting a logarithm. The factorization has applications to the theory os pseudodifferential operators on spaces with conical singularities, e.g., to the index theory and the construction of various sub-calculi of the cone calculus.

In many statistical applications, the aim is to model the relationship between covariates and some outcomes. A choice of the appropriate model depends on the outcome and the research objectives, such as linear models for continuous outcomes, logistic models for binary outcomes and the Cox model for time-to-event data. In epidemiological, medical, biological, societal and economic studies, the logistic regression is widely used to describe the relationship between a response variable as binary outcome and explanatory variables as a set of covariates. However, epidemiologic cohort studies are quite expensive regarding data management since following up a large number of individuals takes long time. Therefore, the case-cohort design is applied to reduce cost and time for data collection. The case-cohort sampling collects a small random sample from the entire cohort, which is called subcohort. The advantage of this design is that the covariate and follow-up data are recorded only on the subcohort and all cases (all members of the cohort who develop the event of interest during the follow-up process).
In this thesis, we investigate the estimation in the logistic model for case-cohort design. First, a model with a binary response and a binary covariate is considered. The maximum likelihood estimator (MLE) is described and its asymptotic properties are established. An estimator for the asymptotic variance of the estimator based on the maximum likelihood approach is proposed; this estimator differs slightly from the estimator introduced by Prentice (1986). Simulation results for several proportions of the subcohort show that the proposed estimator gives lower empirical bias and empirical variance than Prentice's estimator.
Then the MLE in the logistic regression with discrete covariate under case-cohort design is studied. Here the approach of the binary covariate model is extended. Proving asymptotic normality of estimators, standard errors for the estimators can be derived. The simulation study demonstrates the estimation procedure of the logistic regression model with a one-dimensional discrete covariate. Simulation results for several proportions of the subcohort and different choices of the underlying parameters indicate that the estimator developed here performs reasonably well. Moreover, the comparison between theoretical values and simulation results of the asymptotic variance of estimator is presented.
Clearly, the logistic regression is sufficient for the binary outcome refers to be available for all subjects and for a fixed time interval. Nevertheless, in practice, the observations in clinical trials are frequently collected for different time periods and subjects may drop out or relapse from other causes during follow-up. Hence, the logistic regression is not appropriate for incomplete follow-up data; for example, an individual drops out of the study before the end of data collection or an individual has not occurred the event of interest for the duration of the study. These observations are called censored observations. The survival analysis is necessary to solve these problems. Moreover, the time to the occurence of the event of interest is taken into account. The Cox model has been widely used in survival analysis, which can effectively handle the censored data. Cox (1972) proposed the model which is focused on the hazard function. The Cox model is assumed to be
λ(t|x) = λ0(t) exp(β^Tx)
where λ0(t) is an unspecified baseline hazard at time t and X is the vector of covariates, β is a p-dimensional vector of coefficient.
In this thesis, the Cox model is considered under the view point of experimental design. The estimability of the parameter β0 in the Cox model, where β0 denotes the true value of β, and the choice of optimal covariates are investigated. We give new representations of the observed information matrix In(β) and extend results for the Cox model of Andersen and Gill (1982). In this way conditions for the estimability of β0 are formulated. Under some regularity conditions, ∑ is the inverse of the asymptotic variance matrix of the MPLE of β0 in the Cox model and then some properties of the asymptotic variance matrix of the MPLE are highlighted. Based on the results of asymptotic estimability, the calculation of local optimal covariates is considered and shown in examples. In a sensitivity analysis, the efficiency of given covariates is calculated. For neighborhoods of the exponential models, the efficiencies have then been found. It is appeared that for fixed parameters β0, the efficiencies do not change very much for different baseline hazard functions. Some proposals for applicable optimal covariates and a calculation procedure for finding optimal covariates are discussed.
Furthermore, the extension of the Cox model where time-dependent coefficient are allowed, is investigated. In this situation, the maximum local partial likelihood estimator for estimating the coefficient function β(·) is described. Based on this estimator, we formulate a new test procedure for testing, whether a one-dimensional coefficient function β(·) has a prespecified parametric form, say β(·; ϑ). The score function derived from the local constant partial likelihood function at d distinct grid points is considered. It is shown that the distribution of the properly standardized quadratic form of this d-dimensional vector under the null hypothesis tends to a Chi-squared distribution. Moreover, the limit statement remains true when replacing the unknown ϑ0 by the MPLE in the hypothetical model and an asymptotic α-test is given by the quantiles or p-values of the limiting Chi-squared distribution. Finally, we propose a bootstrap version of this test. The bootstrap test is only defined for the special case of testing whether the coefficient function is constant. A simulation study illustrates the behavior of the bootstrap test under the null hypothesis and a special alternative. It gives quite good results for the chosen underlying model.
References
P. K. Andersen and R. D. Gill. Cox's regression model for counting processes: a large samplestudy. Ann. Statist., 10(4):1100{1120, 1982.
D. R. Cox. Regression models and life-tables. J. Roy. Statist. Soc. Ser. B, 34:187{220, 1972.
R. L. Prentice. A case-cohort design for epidemiologic cohort studies and disease prevention trials. Biometrika, 73(1):1{11, 1986.

In this paper we consider the hypo-ellipticity of differential forms on a closed manifold.The main results show that there are some topological obstruct for the existence of the differential forms with hypoellipticity.

Vorlesungs-Pflege
(2018)

Ähnlich zu Alterungsprozessen bei Software degenerieren auch Vorlesungen, wenn sie nicht hinreichend gepflegt werden. Die Gründe hierfür werden ebenso beleuchtet wie mögliche Indikatoren und Maßnahmen – der Blick ist dabei immer der eines Informatikers. An drei Vorlesungen wird erläutert, wie der Degeneration von Lehrveranstaltungen
gegengewirkt werden kann. Mangels hinreichend großer empirischer Daten liefert das Paper keine unumstößlichen Wahrheiten. Ein Ziel ist es vielmehr Kollegen, die ähnliche Phänomene beobachten, einen ersten Anker für einen
inneren Diskurs zu bieten. Ein langfristiges Ziel ist die Sammlung eines Katalogs an Maßnahmen zur Pflege von Informatikvorlesungen.

By perturbing the differential of a (cochain-)complex by "small" operators, one obtains what is referred to as quasicomplexes, i.e. a sequence whose curvature is not equal to zero in general. In this situation the cohomology is no longer defined. Note that it depends on the structure of the underlying spaces whether or not an operator is "small." This leads to a magical mix of perturbation and regularisation theory. In the general setting of Hilbert spaces compact operators are "small." In order to develop this theory, many elements of diverse mathematical disciplines, such as functional analysis, differential geometry, partial differential equation, homological algebra and topology have to be combined. All essential basics are summarised in the first chapter of this thesis. This contains classical elements of index theory, such as Fredholm operators, elliptic pseudodifferential operators and characteristic classes. Moreover we study the de Rham complex and introduce Sobolev spaces of arbitrary order as well as the concept of operator ideals. In the second chapter, the abstract theory of (Fredholm) quasicomplexes of Hilbert spaces will be developed. From the very beginning we will consider quasicomplexes with curvature in an ideal class. We introduce the Euler characteristic, the cone of a quasiendomorphism and the Lefschetz number. In particular, we generalise Euler's identity, which will allow us to develop the Lefschetz theory on nonseparable Hilbert spaces. Finally, in the third chapter the abstract theory will be applied to elliptic quasicomplexes with pseudodifferential operators of arbitrary order. We will show that the Atiyah-Singer index formula holds true for those objects and, as an example, we will compute the Euler characteristic of the connection quasicomplex. In addition to this we introduce geometric quasiendomorphisms and prove a generalisation of the Lefschetz fixed point theorem of Atiyah and Bott.

In a recent paper with N. Tarkhanov, the Lefschetz number for endomorphisms (modulo trace class operators) of sequences of trace class curvature was introduced. We show that this is a well defined, canonical extension of the classical Lefschetz number and establish the homotopy invariance of this number. Moreover, we apply the results to show that the Lefschetz fixed point formula holds for geometric quasiendomorphisms of elliptic quasicomplexes.

The International Project for the Evaluation of Educational Achievement (IEA) was formed in the 1950s (Postlethwaite, 1967). Since that time, the IEA has conducted many studies in the area of mathematics, such as the First International Mathematics Study (FIMS) in 1964, the Second International Mathematics Study (SIMS) in 1980-1982, and a series of studies beginning with the Third International Mathematics and Science Study (TIMSS) which has been conducted every 4 years since 1995. According to Stigler et al. (1999), in the FIMS and the SIMS, U.S. students achieved low scores in comparison with students in other countries (p. 1). The TIMSS 1995 “Videotape Classroom Study” was therefore a complement to the earlier studies conducted to learn “more about the instructional and cultural processes that are associated with achievement” (Stigler et al., 1999, p. 1). The TIMSS Videotape Classroom Study is known today as the TIMSS Video Study. From the findings of the TIMSS 1995 Video Study, Stigler and Hiebert (1999) likened teaching to “mountain ranges poking above the surface of the water,” whereby they implied that we might see the mountaintops, but we do not see the hidden parts underneath these mountain ranges (pp. 73-78). By watching the videotaped lessons from Germany, Japan, and the United States again and again, they discovered that “the systems of teaching within each country look similar from lesson to lesson. At least, there are certain recurring features [or patterns] that typify many of the lessons within a country and distinguish the lessons among countries” (pp. 77-78). They also discovered that “teaching is a cultural activity,” so the systems of teaching “must be understood in relation to the cultural beliefs and assumptions that surround them” (pp. 85, 88). From this viewpoint, one of the purposes of this dissertation was to study some cultural aspects of mathematics teaching and relate the results to mathematics teaching and learning in Vietnam. Another research purpose was to carry out a video study in Vietnam to find out the characteristics of Vietnamese mathematics teaching and compare these characteristics with those of other countries. In particular, this dissertation carried out the following research tasks: - Studying the characteristics of teaching and learning in different cultures and relating the results to mathematics teaching and learning in Vietnam - Introducing the TIMSS, the TIMSS Video Study and the advantages of using video study in investigating mathematics teaching and learning - Carrying out the video study in Vietnam to identify the image, scripts and patterns, and the lesson signature of eighth-grade mathematics teaching in Vietnam - Comparing some aspects of mathematics teaching in Vietnam and other countries and identifying the similarities and differences across countries - Studying the demands and challenges of innovating mathematics teaching methods in Vietnam – lessons from the video studies Hopefully, this dissertation will be a useful reference material for pre-service teachers at education universities to understand the nature of teaching and develop their teaching career.

Harness-Prozesse
(2010)

Harness-Prozesse finden in der Forschung immer mehr Anwendung. Vor allem gewinnen Harness-Prozesse in stetiger Zeit an Bedeutung. Grundlegende Literatur zu diesem Thema ist allerdings wenig vorhanden. In der vorliegenden Arbeit wird die vorhandene Grundlagenliteratur zu Harness-Prozessen in diskreter und stetiger Zeit aufgearbeitet und Beweise ausgeführt, die bisher nur skizziert waren. Ziel dessen ist die Existenz einer Zerlegung von Harness-Prozessen über Z beziehungsweise R+ nachzuweisen.

The interdisciplinary workshop STOCHASTIC PROCESSES WITH APPLICATIONS IN THE NATURAL SCIENCES was held in Bogotá, at Universidad de los Andes from December 5 to December 9, 2016. It brought together researchers from Colombia, Germany, France, Italy, Ukraine, who communicated recent progress in the mathematical research related to stochastic processes with application in biophysics.
The present volume collects three of the four courses held at this meeting by Angelo Valleriani, Sylvie Rœlly and Alexei Kulik.
A particular aim of this collection is to inspire young scientists in setting up research goals within the wide scope of fields represented in this volume.
Angelo Valleriani, PhD in high energy physics, is group leader of the team "Stochastic processes in complex and biological systems" from the Max-Planck-Institute of Colloids and Interfaces, Potsdam.
Sylvie Rœlly, Docteur en Mathématiques, is the head of the chair of Probability at the University of Potsdam.
Alexei Kulik, Doctor of Sciences, is a Leading researcher at the Institute of Mathematics of Ukrainian National Academy of Sciences.

The overall program "arborescent numbers" is to similarly perform the constructions from the natural numbers (N) to the positive fractional numbers (Q+) to positive real numbers (R+) beginning with (specific) binary trees instead of natural numbers. N can be regarded as the associative binary trees. The binary trees B and the left-commutative binary trees P allow the hassle-free definition of arbitrary high arithmetic operations (hyper ... hyperpowers). To construct the division trees the algebraic structure "coppice" is introduced which is a group with an addition over which the multiplication is right-distributive. Q+ is the initial associative coppice. The present work accomplishes one step in the program "arborescent numbers". That is the construction of the arborescent equivalent(s) of the positive fractional numbers. These equivalents are the "division binary trees" and the "fractional trees". A representation with decidable word problem for each of them is given. The set of functions f:R1->R1 generated from identity by taking powers is isomorphic to P and can be embedded into a coppice by taking inverses.

Students of computer science studies enter university education with very different competencies, experience and knowledge. 145 datasets collected of freshmen computer science students by learning management systems in relation to exam outcomes and learning dispositions data (e. g. student dispositions, previous experiences and attitudes measured through self-reported surveys) has been exploited to identify indicators as predictors of academic success and hence make effective interventions to deal with an extremely heterogeneous group of students.

We introduce the calculus of Mellin pseudodifferential operators parameters based on "twisted" operator-valued Volterra symbols as well aas the abstract Mellin calclus with holomorphic symbols. We establish the properties of the symblic and operational calculi, and we give and make use of explicit oscillatory integral formulas on the symbolic side, e. g., for the Leibniz-product, kernel cut-off, and Mellin quantization. Moreover, we introduce the notion of parabolicity for the calculi of Volterra Mellin operators, and construct Volterra parametrices for parabolic operators within the calculi.

We consider a mixed problem for a degenerate differentialoperator equation of higher order. We establish some embedding theorems in weighted Sobolev spaces and show existence and uniqueness of the generalized solution of this problem. We also give a description of the spectrum for the corresponding operator.

For a sequence of Hilbert spaces and continuous linear operators the curvature is defined to be the composition of any two consecutive operators. This is modeled on the de Rham resolution of a connection on a module over an algebra. Of particular interest are those sequences for which the curvature is "small" at each step, e.g., belongs to a fixed operator ideal. In this context we elaborate the theory of Fredholm sequences and show how to introduce the Lefschetz number.

In order to characterise the C*-algebra generated by the singular Bochner-Martinelli integral over a smooth closed hypersurfaces in Cn, we compute its principal symbol. We show then that the Szegö projection belongs to the strong closure of the algebra generated by the singular Bochner-Martinelli integral.

The Riemann hypothesis is equivalent to the fact the the reciprocal function 1/zeta (s) extends from the interval (1/2,1) to an analytic function in the quarter-strip 1/2 < Re s < 1 and Im s > 0. Function theory allows one to rewrite the condition of analytic continuability in an elegant form amenable to numerical experiments.

By quasicomplexes are usually meant perturbations of complexes small in some sense. Of interest are not only perturbations within the category of complexes but also those going beyond this category. A sequence perturbed in this way is no longer a complex, and so it bears no cohomology. We show how to introduce Euler characteristic for small perturbations of Fredholm complexes. The paper is to appear in Funct. Anal. and its Appl., 2006.

We consider a boundary value problem for an elliptic differential operator of order 2m in a domain D ⊂ n. The boundary of D is smooth outside a finite number of conical points, and the Lopatinskii condition is fulfilled on the smooth part of δD. The corresponding spaces are weighted Sobolev spaces H(up s,Υ)(D), and this allows one to define ellipticity of weight Υ for the problem. The resolvent of the problem is assumed to possess rays of minimal growth. The main result says that if there are rays of minimal growth with angles between neighbouring rays not exceeding π(Υ + 2m)/n, then the root functions of the problem are complete in L²(D). In the case of second order elliptic equations the results remain true for all domains with Lipschitz boundary.

We study the Neumann problem for the de Rham complex in a bounded domain of Rn with singularities on the boundary. The singularities may be general enough, varying from Lipschitz domains to domains with cuspidal edges on the boundary. Following Lopatinskii we reduce the Neumann problem to a singular integral equation of the boundary. The Fredholm solvability of this equation is then equivalent to the Fredholm property of the Neumann problem in suitable function spaces. The boundary integral equation is explicitly written and may be treated in diverse methods. This way we obtain, in particular, asymptotic expansions of harmonic forms near singularities of the boundary.

We show a Lefschetz fixed point formula for holomorphic functions in a bounded domain D with smooth boundary in the complex plane. To introduce the Lefschetz number for a holomorphic map of D, we make use of the Bergman kernal of this domain. The Lefschetz number is proved to be the sum of usual contributions of fixed points of the map in D and contributions of boundary fixed points, these latter being different for attracting and repulsing fixed points.

Anisotropic edge problems
(2002)

We investigate elliptic pseudodifferential operators which degenerate in an anisotropic way on a submanifold of arbitrary codimension. To find Fredholm problems for such operators we adjoint to them boundary and coboundary conditions on the submanifold.The algebra obtained this way is a far reaching generalisation of Boutet de Monvel's algebra of boundary value problems with transmission property. We construct left and right regularisers and prove theorems on hypoellipticity and local solvability.

The paper is devoted to asymptotic analysis of the Dirichlet problem for a second order partial differential equation containing a small parameter multiplying the highest order derivatives. It corresponds to a small perturbation of a dynamical system having a stationary solution in the domain. We focus on the case where the trajectories of the system go into the domain and the stationary solution is a proper node.

Empirische Untersuchungen von Lückentext-Items zur Beherrschung der Syntax einer Programmiersprache
(2018)

Lückentext-Items auf der Basis von Programmcode können eingesetzt werden, um Kenntnisse in der Syntax einer Programmiersprache zu prüfen, ohne dazu komplexe Programmieraufgaben zu stellen, deren Bearbeitung weitere Kompetenzen erfordert. Der vorliegende Beitrag dokumentiert den Einsatz von insgesamt zehn derartigen Items in einer universitären Erstsemestervorlesung zur Programmierung mit Java. Es werden sowohl Erfahrungen mit der Konstruktion der Items als auch empirische Daten aus dem Einsatz diskutiert. Der Beitrag zeigt dadurch insbesondere die Herausforderungen bei der Konstruktion valider Instrumente zur Kompetenzmessung in der Programmierausbildung auf. Die begrenzten und teilweise vorläufigen Ergebnisse zur Qualität der erzeugten Items legen trotzdem nahe, dass Erstellung und Einsatz entsprechender Items möglich ist und einen Beitrag zur Kompetenzmessung leisten kann.

During the drug discovery & development process, several phases encompassing a number of preclinical and clinical studies have to be successfully passed to demonstrate safety and efficacy of a new drug candidate. As part of these studies, the characterization of the drug's pharmacokinetics (PK) is an important aspect, since the PK is assumed to strongly impact safety and efficacy. To this end, drug concentrations are measured repeatedly over time in a study population. The objectives of such studies are to describe the typical PK time-course and the associated variability between subjects. Furthermore, underlying sources significantly contributing to this variability, e.g. the use of comedication, should be identified. The most commonly used statistical framework to analyse repeated measurement data is the nonlinear mixed effect (NLME) approach. At the same time, ample knowledge about the drug's properties already exists and has been accumulating during the discovery & development process: Before any drug is tested in humans, detailed knowledge about the PK in different animal species has to be collected. This drug-specific knowledge and general knowledge about the species' physiology is exploited in mechanistic physiological based PK (PBPK) modeling approaches -it is, however, ignored in the classical NLME modeling approach.
Mechanistic physiological based models aim to incorporate relevant and known physiological processes which contribute to the overlying process of interest. In comparison to data--driven models they are usually more complex from a mathematical perspective. For example, in many situations, the number of model parameters outrange the number of measurements and thus reliable parameter estimation becomes more complex and partly impossible. As a consequence, the integration of powerful mathematical estimation approaches like the NLME modeling approach -which is widely used in data-driven modeling -and the mechanistic modeling approach is not well established; the observed data is rather used as a confirming instead of a model informing and building input.
Another aggravating circumstance of an integrated approach is the inaccessibility to the details of the NLME methodology so that these approaches can be adapted to the specifics and needs of mechanistic modeling. Despite the fact that the NLME modeling approach exists for several decades, details of the mathematical methodology is scattered around a wide range of literature and a comprehensive, rigorous derivation is lacking. Available literature usually only covers selected parts of the mathematical methodology. Sometimes, important steps are not described or are only heuristically motivated, e.g. the iterative algorithm to finally determine the parameter estimates.
Thus, in the present thesis the mathematical methodology of NLME modeling is systemically described and complemented to a comprehensive description,
comprising the common theme from ideas and motivation to the final parameter estimation. Therein, new insights for the interpretation of different approximation methods used in the context of the NLME modeling approach are given and illustrated; furthermore, similarities and differences between them are outlined. Based on these findings, an expectation-maximization (EM) algorithm to determine estimates of a NLME model is described.
Using the EM algorithm and the lumping methodology by Pilari2010, a new approach on how PBPK and NLME modeling can be combined is presented and exemplified for the antibiotic levofloxacin. Therein, the lumping identifies which processes are informed by the available data and the respective model reduction improves the robustness in parameter estimation. Furthermore, it is shown how apriori known factors influencing the variability and apriori known unexplained variability is incorporated to further mechanistically drive the model development. Concludingly, correlation between parameters and between covariates is automatically accounted for due to the mechanistic derivation of the lumping and the covariate relationships.
A useful feature of PBPK models compared to classical data-driven PK models is in the possibility to predict drug concentration within all organs and tissue in the body. Thus, the resulting PBPK model for levofloxacin is used to predict drug concentrations and their variability within soft tissues which are the site of action for levofloxacin. These predictions are compared with data of muscle and adipose tissue obtained by microdialysis, which is an invasive technique to measure a proportion of drug in the tissue, allowing to approximate the concentrations in the interstitial fluid of tissues. Because, so far, comparing human in vivo tissue PK and PBPK predictions are not established, a new conceptual framework is derived. The comparison of PBPK model predictions and microdialysis measurements shows an adequate agreement and reveals further strengths of the presented new approach.
We demonstrated how mechanistic PBPK models, which are usually developed in the early stage of drug development, can be used as basis for model building in the analysis of later stages, i.e. in clinical studies. As a consequence, the extensively collected and accumulated knowledge about species and drug are utilized and updated with specific volunteer or patient data. The NLME approach combined with mechanistic modeling reveals new insights for the mechanistic model, for example identification and quantification of variability in mechanistic processes. This represents a further contribution to the learn & confirm paradigm across different stages of drug development.
Finally, the applicability of mechanism--driven model development is demonstrated on an example from the field of Quantitative Psycholinguistics to analyse repeated eye movement data. Our approach gives new insight into the interpretation of these experiments and the processes behind.

On completeness of root functions of Sturm-Liouville problems with discontinuous boundary operators
(2012)

We consider a Sturm-Liouville boundary value problem in a bounded domain D of R^n. By this is meant that the differential equation is given by a second order elliptic operator of divergent form in D and the boundary conditions are of Robin type on bD. The first order term of the boundary operator is the oblique derivative whose coefficients bear discontinuities of the first kind. Applying the method of weak perturbation of compact self-adjoint operators and the method of rays of minimal growth, we prove the completeness of root functions related to the boundary value problem in Lebesgue and Sobolev spaces of various types.

We consider the Navier-Stokes equations in the layer R^n x [0,T] over R^n with finite T > 0. Using the standard fundamental solutions of the Laplace operator and the heat operator, we reduce the Navier-Stokes equations to a nonlinear Fredholm equation of the form (I+K) u = f, where K is a compact continuous operator in anisotropic normed Hölder spaces weighted at the point at infinity with respect to the space variables. Actually, the weight function is included to provide a finite energy estimate for solutions to the Navier-Stokes equations for all t in [0,T]. On using the particular properties of the de Rham complex we conclude that the Fréchet derivative (I+K)' is continuously invertible at each point of the Banach space under consideration and the map I+K is open and injective in the space. In this way the Navier-Stokes equations prove to induce an open one-to-one mapping in the scale of Hölder spaces.

Let X be a smooth n -dimensional manifold and D be an open connected set in X with smooth boundary ∂D. Perturbing the Cauchy problem for an elliptic system Au = f in D with data on a closed set Γ ⊂ ∂D we obtain a family of mixed problems depending on a small parameter ε > 0. Although the mixed problems are subject to a non-coercive boundary condition on ∂D\Γ in general, each of them is uniquely solvable in an appropriate Hilbert space DT and the corresponding family {uε} of solutions approximates the solution of the Cauchy problem in DT whenever the solution exists. We also prove that the existence of a solution to the Cauchy problem in DT is equivalent to the boundedness of the family {uε}. We thus derive a solvability condition for the Cauchy problem and an effective method of constructing its solution. Examples for Dirac operators in the Euclidean space Rn are considered. In the latter case we obtain a family of mixed boundary problems for the Helmholtz equation.

Formal Poincaré lemma
(2007)

We show how the multiple application of the formal Cauchy-Kovalevskaya theorem leads to the main result of the formal theory of overdetermined systems of partial differential equations. Namely, any sufficiently regular system Au = f with smooth coefficients on an open set U ⊂ Rn admits a solution in smooth sections of a bundle of formal power series, provided that f satisfies a compatibility condition in U.

This is a brief survey of a constructive technique of analytic continuation related to an explicit integral formula of Golusin and Krylov (1933). It goes far beyond complex analysis and applies to the Cauchy problem for elliptic partial differential equations as well. As started in the classical papers, the technique is elaborated in generalised Hardy spaces also called Hardy-Smirnov spaces.

Let A be a determined or overdetermined elliptic differential operator on a smooth compact manifold X. Write Ssub(A)(D) for the space of solutions to thesystem Au = 0 in a domain D ⊂ X. Using reproducing kernels related to various Hilbert structures on subspaces of Ssub(A)(D) we show explicit identifications of the dual spaces. To prove the "regularity" of reproducing kernels up to the boundary of D we specify them as resolution operators of abstract Neumann problems. The matter thus reduces to a regularity theorem for the Neumann problem, a well-known example being the ∂-Neumann problem. The duality itself takes place only for those domains D which possess certain convexity properties with respect to A.

We consider a (generally, non-coercive) mixed boundary value problem in a bounded domain for a second order elliptic differential operator A. The differential operator is assumed to be of divergent form and the boundary operator B is of Robin type. The boundary is assumed to be a Lipschitz surface. Besides, we distinguish a closed subset of the boundary and control the growth of solutions near this set. We prove that the pair (A,B) induces a Fredholm operator L in suitable weighted spaces of Sobolev type, the weight function being a power of the distance to the singular set. Moreover, we prove the completeness of root functions related to L.

We prove the existence of Hp(D)-limit of iterations of double layer potentials constructed with the use of Hodge parametrix on a smooth compact manifold X, D being an open connected subset of X. This limit gives us an orthogonal projection from Sobolev space Hp(D) to a closed subspace of Hp(D)-solutions of an elliptic operator P of order p ≥ 1. Using this result we obtain formulae for Sobolev solutions to the equation Pu = f in D whenever these solutions exist. This representation involves the sum of a series whose terms are iterations of double layer potentials. Similar regularization is constructed also for a P-Neumann problem in D.

Let Hsub(0), Hsub(1) be Hilbert spaces and L : Hsub(0) -> Hsub(1) be a linear bounded operator with ||L|| ≤ 1. Then L*L is a bounded linear self-adjoint non-negative operator in the Hilbert space Hsub(0) and one can use the Neumann series ∑∞sub(v=0)(I - L*L)v L*f in order to study solvability of the operator equation Lu = f. In particular, applying this method to the ill-posed Cauchy problem for solutions to an elliptic system Pu = 0 of linear PDE's of order p with smooth coefficients we obtain solvability conditions and representation formulae for solutions of the problem in Hardy spaces whenever these solutions exist. For the Cauchy-Riemann system in C the summands of the Neumann series are iterations of the Cauchy type integral. We also obtain similar results 1) for the equation Pu = f in Sobolev spaces, 2) for the Dirichlet problem and 3) for the Neumann problem related to operator P*P if P is a homogeneous first order operator and its coefficients are constant. In these cases the representations involve sums of series whose terms are iterations of integro-differential operators, while the solvability conditions consist of convergence of the series together with trivial necessary conditions.

Um für ein Leben in der digitalen Gesellschaft vorbereitet zu sein, braucht jeder heute in verschiedenen Situationen umfangreiche informatische Grundlagen. Die Bedeutung von Informatik nimmt nicht nur in immer mehr
Bereichen unseres täglichen Lebens zu, sondern auch in immer mehr Ausbildungsrichtungen. Um junge Menschen auf ihr zukünftiges Leben und/oder ihre zukünftige berufliche Tätigkeit vorzubereiten, bieten verschiedene Hochschulen Informatikmodule für Studierende anderer Fachrichtungen an. Die Materialien jener Kurse bilden einen umfangreichen Datenpool, um die für Studierende anderer Fächer bedeutenden Aspekte der Informatik mithilfe eines empirischen Ansatzes zu identifizieren. Im Folgenden werden 70 Module zu informatischer Bildung für Studierende anderer Fachrichtungen analysiert. Die Materialien – Publikationen, Syllabi und Stundentafeln – werden zunächst mit einer qualitativen Inhaltsanalyse nach Mayring untersucht und anschließend quantitativ ausgewertet. Basierend auf der Analyse werden Ziele, zentrale Themen und Typen eingesetzter Werkzeuge identifiziert.

The ellipticity of boundary value problems on a smooth manifold with boundary relies on a two-component principal symbolic structure (σψ; σ∂), consisting of interior and boundary symbols. In the case of a smooth edge on manifolds with boundary we have a third symbolic component, namely the edge symbol σ∧, referring to extra conditions on the edge, analogously as boundary conditions. Apart from such conditions in integral form' there may exist singular trace conditions, investigated in [6] on closed' manifolds with edge. Here we concentrate on the phenomena in combination with boundary conditions and edge problem.

Green operators on manifolds with edges are known to be an ingredient of parametrices of elliptic (edge-degenerate) operators. They play a similar role as corresponding operators in boundary value problems. Close to edge singularities the Green operators have a very complex asymptotic behaviour. We give a new characterisation of Green edge symbols in terms of kernels with discrete and continuous asymptotics in the axial variable of local model cones.

The aim of this book is to develop the Lefschetz fixed point theory for elliptic complexes of pseudodifferential operators on manifolds with edges. The general Lefschetz theory contains the index theory as a special case, while the case to be studied is much more easier than the index problem. The main topics are: - The calculus of pseudodifferential operators on manifolds with edges, especially symbol structures (inner as well as edge symbols). - The concept of ellipticity, parametrix constructions, elliptic regularity in Sobolev spaces. - Hodge theory for elliptic complexes of pseudodifferential operators on manifolds with edges. - Development of the algebraic constructions for these complexes, such as homotopy, tensor products, duality. - A generalization of the fixed point formula of Atiyah and Bott for the case of simple fixed points. - Development of the fixed point formula also in the case of non-simple fixed points, provided that the complex consists of diferential operarators only. - Investigation of geometric complexes (such as, for instance, the de Rham complex and the Dolbeault complex). Results in this direction are desirable because of both purely mathe matical reasons and applications in natural sciences.

We describe a new algebra of boundary value problems which contains Lopatinskii elliptic as well as Toeplitz type conditions. These latter are necessary, if an analogue of the Atiyah-Bott obstruction does not vanish. Every elliptic operator is proved to admit up to a stabilisation elliptic conditions of such a kind. Corresponding boundary value problems are then Fredholm in adequate scales of spaces. The crucial novelty consists of the new type of weighted Sobolev spaces which serve as domains of pseudodifferential operators and which fit well to the nature of operators.

On a compact closed manifold with edges live pseudodifferential operators which are block matrices of operators with additional edge conditions like boundary conditions in boundary value problems. They include Green, trace and potential operators along the edges, act in a kind of Sobolev spaces and form an algebra with a wealthy symbolic structure. We consider complexes of Fréchet spaces whose differentials are given by operators in this algebra. Since the algebra in question is a microlocalization of the Lie algebra of typical vector fields on a manifold with edges, such complexes are of great geometric interest. In particular, the de Rham and Dolbeault complexes on manifolds with edges fit into this framework. To each complex there correspond two sequences of symbols, one of the two controls the interior ellipticity while the other sequence controls the ellipticity at the edges. The elliptic complexes prove to be Fredholm, i.e., have a finite-dimensional cohomology. Using specific tools in the algebra of pseudodifferential operators we develop a Hodge theory for elliptic complexes and outline a few applications thereof.

We consider a homogeneous pseudodifferential equation on a cylinder C = IR x X over a smooth compact closed manifold X whose symbol extends to a meromorphic function on the complex plane with values in the algebra of pseudodifferential operators over X. When assuming the symbol to be independent on the variable t element IR, we show an explicit formula for solutions of the equation. Namely, to each non-bijectivity point of the symbol in the complex plane there corresponds a finite-dimensional space of solutions, every solution being the residue of a meromorphic form manufactured from the inverse symbol. In particular, for differential equations we recover Euler's theorem on the exponential solutions. Our setting is model for the analysis on manifolds with conical points since C can be thought of as a 'stretched' manifold with conical points at t = -infinite and t = infinite.

The paper contains the proof of the index formula for manifolds with conical points. For operators subject to an additional condition of spectral symmetry, the index is expressed as the sum of multiplicities of spectral points of the conormal symbol (indicial family) and the integral from the Atiyah-Singer form over the smooth part of the manifold. The obtained formula is illustrated by the example of the Euler operator on a two-dimensional manifold with conical singular point.

We construct a theory of general boundary value problems for differential operators whose symbols do not necessarily satisfy the Atiyah-Bott condition [3] of vanishing of the corresponding obstruction. A condition for these problems to be Fredholm is introduced and the corresponding finiteness theorems are proved.

The homotopy classification and the index of boundary value problems for general elliptic operators
(1999)

We give the homotopy classification and compute the index of boundary value problems for elliptic equations. The classical case of operators that satisfy the Atiyah-Bott condition is studied first. We also consider the general case of boundary value problems for operators that do not necessarily satisfy the Atiyah-Bott condition.

We prove the existence of a limit in Hm(D) of iterations of a double layer potential constructed from the Hodge parametrix on a smooth compact manifold with boundary, X, and a crack S ⊂ ∂D, D being a domain in X. Using this result we obtain formulas for Sobolev solutions to the Cauchy problem in D with data on S, for an elliptic operator A of order m ≥ 1, whenever these solutions exist. This representation involves the sum of a series whose terms are iterations of the double layer potential. A similar regularisation is constructed also for a mixed problem in D.

Contents: Introduction 1 Operators with the transmission property 1.1 Operators on a manifold with boundary 1.2 Conditions with pseudodifferential projections 1.3 Projections and Fredholm families 2 Boundary value problems not requiring the transmission property 2.1 Interior operators 2.2 Edge amplitude functions 2.3 Boundary value problems 3 Operators with global projection conditions 3.1 Construction for boundary symbols 3.2 Ellipticity of boundary value problems with projection data 3.3 Operators of order zero

Boundary value problems for pseudodifferential operators (with or without the transmission property) are characterised as a substructure of the edge pseudodifferential calculus with constant discrete asymptotics. The boundary in this case is the edge and the inner normal the model cone of local wedges. Elliptic boundary value problems for non-integer powers of the Laplace symbol belong to the examples as well as problems for the identity in the interior with a prescribed number of trace and potential conditions. Transmission operators are characterised as smoothing Mellin and Green operators with meromorphic symbols.

The paper deals with the calculation of the fractional part of the η-invariant for elliptic self-adjoint operators in topological terms. The method used to obtain the corresponding formula is based on the index theorem for elliptic operators in subspaces obtained in [1], [2]. It also utilizes K-theory with coefficients Zsub(n). In particular, it is shown that the group K(T*M,Zsub(n)) is realized by elliptic operators (symbols) acting in appropriate subspaces.

In this paper we establish the regularity, exponential stability of global (weak) solutions and existence of uniform compact attractors of semiprocesses, which are generated by the global solutions, of a two-parameter family of operators for the nonlinear 1-d non-autonomous viscoelasticity. We employ the properties of the analytic semigroup to show the compactness for the semiprocess generated by the global solutions.

For elliptic operators on manifolds with boundary, we define spectral boundary value problems, which generalize the Atiyah-Patodi-Singer problem to the case of nonhomogeneous boundary conditions, operators of arbitrary order, and nonself-adjoint conormal symbols. The Fredholm property is proved and equivalence with certain elliptic equations on manifolds with conical singularities is established.

The quantization of contact transformations of the cosphere bundle over a manifold with conical singularities is described. The index of Fredholm operators given by this quantization is calculated. The answer is given in terms of the Epstein-Melrose contact degree and the conormal symbol of the corresponding operator.

We give a brief survey on some new developments on elliptic operators on manifolds with polyhedral singularities. The material essentially corresponds to a talk given by the author during the Conference “Elliptic and Hyperbolic Equations on Singular Spaces”, October 27 - 31, 2008, at the MSRI, University of Berkeley.

We give a survey on the calculus of (pseudo-differential) boundary value problems with the transmision property at the boundary, and ellipticity in the Shapiro-Lopatinskij sense. Apart from the original results of the work of Boutet de Monvel we present an approach based on the ideas of the edge calculus. In a final section we introduce symbols with the anti-transmission property.

On a manifold with edge we construct a specific class of (edgedegenerate) elliptic differential operators. The ellipticity refers to the principal symbolic structure σ = (σψ, σ^) of the edge calculus consisting of the interior and edge symbol, denoted by σψ and σ^, respectively. For our choice of weights the ellipticity will not require additional edge conditions of trace or potential type, and the operators will induce isomorphisms between the respective edge spaces.

Differential and pseudo-differential operators on a manifold with (regular) geometric singularities can be studied within a calculus, inspired by the concept of classical pseudo-differential operators on a C1 manifold. In the singular case the operators form an algebra with a principal symbolic hierarchy σ = (σj)0≤j≤k, with k being the order of the singularity and σk operator-valued for k ≥ 1. The symbols determine ellipticity and the nature of parametrices. It is typical in this theory that, similarly as in boundary value problems (which are special edge problems, where the edge is just the boundary), there are trace, potential and Green operators, associated with the various strata of the configuration. The operators, obtained from the symbols by various quantisations, act in weighted distribution spaces with multiple weights. We outline some essential elements of this calculus, give examples and also comment on new challenges and interesting problems of the recent development.

We investigate crack problems, where the crack boundary has conical singularities. Elliptic operators with two-sided elliptc boundary conditions on the plus and minus sides of the crack will be interpreted as elements of a corner algebra of boundary value problems. The corresponding operators will be completed by extra edge conditions on the crack boundary to Fredholm operators in corner Sobolev spaces with double weights, and there are parametrices within the calculus.

We construct an algebra of pseudo-differential boundary value problems that contains the classical Shapiro-Lopatinskij elliptic problems as well as all differential elliptic problems of Dirac type with APS boundary conditions, together with their parametrices. Global pseudo-differential projections on the boundary are used to define ellipticity and to show the Fredholm property in suitable scales of spaces.

Toeplitz operators, and ellipticity of boundary value problems with global projection conditions
(2003)

Ellipticity of (pseudo-) differential operators A on a compact manifold X with boundary (or with edges) Y is connected with boundary (or edge) conditions of trace and potential type, formulated in terms of global projections on Y together with an additional symbolic structure. This gives rise to operator block matrices A with A in the upper left corner. We study an algebra of such operators, where ellipticity is equivalent to the Fredhom property in suitable scales of spaces: Sobolev spaces on X plus closed subspaces of Sobolev spaces on Y which are the range of corresponding pseudo-differential projections. Moreover, we express parametrices of elliptic elements within our algebra and discuss spectral boundary value problems for differential operators.

Problems for elliptic partial differential equations on manifolds M with singularities M' (here with piece-wise smooth geometry)are studied in terms of pseudo-differential algebras with hierarchies of symbols that consist of scalar and operator-valued components. Classical boundary value problems (with or without the transmission property) belong to the examples. They are a model for operator algebras on manifolds M with higher "polyhedral" singularities. The operators are block matrices that have upper left corners containing the pseudo-differential operators on the regular M\M' (plus certain Mellin and Green summands) and are degenerate (in streched coordinates) in a typical way near M'. By definition M' is again a manifold with singularities. The same is true of M'', and so on. The block matrices consist of trace, potential and Mellin and Green operators, acting between weighted Sobolev spaces on M(j) and M(k), with 0 ≤ j, k ≤ ord M; here M(0) denotes M, M(1) denotes M', etc. We generate these algebras, including their symbol hierarchies, by iterating so-called "edgifications" and "conifications" os algebras that have already been constructed, and we study ellipicity, parametrics and Fredholm property within these algebras.

Contents: Introduction 1 Edge calculus with parameters 1.1 Cone asymptotics and Green symbols 1.2 Mellin edge symbols 1.3 The edge symbol algebra 1.4 Operators on a manifold with edges 2 Corner symbols and iterated asymptotics 2.1 Holomorphic corner symbols 2.2 Meromorphic corner symbols and ellipicity 2.3 Weighted corner Sobolev spaces 2.4 Iterated asymptotics 3 The edge corner algebra with trace and potential conditions 3.1 Green corner operators 3.2 Smoothing Mellin corner operators 3.3 The edge corner algebra 3.4 Ellipicity and regularity with asymptotics 3.5 Examples and remarks

Soit (A, H, F) un module de Fredholm p-sommable, où l'algèbre A = CT est engendrée par un groupe discret Gamma d'éléments unitaires de L(H) qui est de croissance polynomiale r. On construit alors un triplet spectral (A, H, D) sommabilité q pour tout q > p + r + 1 avec F = signD. Dans le cas où (A, H, F) est (p, infini)-sommable on obtient la (q, infini)-sommabilité de (A, H, D)pour tout q > p + r + 1.

We study an elliptic differential operator on a manifold with conical singularities, acting as an unbounded operator on a weighted Lp-space. Under suitable conditions we show that the resolvent (λ - A )-¹ exists in a sector of the complex plane and decays like 1/|λ| as |λ| -> ∞. Moreover, we determine the structure of the resolvent with enough precision to guarantee existence and boundedness of imaginary powers of A. As an application we treat the Laplace-Beltrami operator for a metric with striaght conical degeneracy and establish maximal regularity for the Cauchy problem u - Δu = f, u(0) = 0.

Given a manifold B with conical singularities, we consider the cone algebra with discrete asymptotics, introduced by Schulze, on a suitable scale of Lp-Sobolev spaces. Ellipticity is proven to be equivalent to the Fredholm property in these spaces, it turns out to be independent of the choice of p. We then show that the cone algebra is closed under inversion: whenever an operator is invertible between the associated Sobolev spaces, its inverse belongs to the calculus. We use these results to analyze the behaviour of these operators on Lp(B).

We consider edge-degenerate families of pseudodifferential boundary value problems on a semi-infinite cylinder and study the behavior of their push-forwards as the cylinder is blown up to a cone near infinity. We show that the transformed symbols belong to a particularly convenient symbol class. This result has applications in the Fredholm theory of boundary value problems on manifolds with edges.